Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(1): 323-332, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153836

ABSTRACT

Vibronic coupling has a dramatic influence over a large number of molecular processes, ranging from photochemistry to spin relaxation and electronic transport. The simulation of vibronic coupling with multireference wave function methods has been largely applied to organic compounds, and only early efforts are available for open-shell systems such as transition metal and lanthanide complexes. In this work, we derive a numerical strategy to differentiate the molecular electronic Hamiltonian in the context of multireference ab initio methods and inclusive of spin-orbit coupling effects. We then provide a formulation of open quantum system dynamics able to predict the time evolution of the electron density matrix under the influence of a Markovian phonon bath up to fourth-order perturbation theory. We apply our method to Co(II) and Dy(III) molecular complexes exhibiting long spin relaxation times and successfully validate our strategy against the use of an effective spin Hamiltonian. Our study sheds light on the nature of vibronic coupling, the importance of electronic excited states in spin relaxation, and the need for high-level computational chemistry to quantify it.

2.
J Chem Theory Comput ; 17(5): 2807-2816, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33831303

ABSTRACT

We recently showed that the DFT+U approach with a linear-response U yields adiabatic energy differences biased toward high spin [Mariano et al. J. Chem. Theory Comput. 2020, 16, 6755-6762]. Such bias is removed here by employing a density-corrected DFT approach where the PBE functional is evaluated on the Hubbard U-corrected density. The adiabatic energy differences of six Fe(II) molecular complexes computed using this approach, named PBE[U] here, are in excellent agreement with coupled cluster-corrected CASPT2 values for both weak- and strong-field ligands resulting in a mean absolute error (MAE) of 0.44 eV, smaller than that of the recently proposed Hartree-Fock density-corrected DFT (1.22 eV) and any other tested functional, including the best performer TPSSh (0.49 eV). We take advantage of the computational efficiency of this approach and compute the adiabatic energy differences of five molecular crystals using PBE[U] with periodic boundary conditions. The results show, again, an excellent agreement (MAE = 0.07 eV) with experimentally extracted values and a superior performance compared with the best performers M06-L (MAE = 0.08 eV) and TPSSh (MAE = 0.31 eV) computed on molecular fragments.

3.
J Chem Theory Comput ; 16(11): 6755-6762, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33108722

ABSTRACT

The spin-state energetics of six Fe(II) molecular complexes are computed using the linear-response Hubbard U approach within DFT. The adiabatic energy differences, ΔEH-L, between the high-spin (S = 2) and the low-spin (S = 0) states are computed and compared with accurate-coupled cluster-corrected CASPT2 results. We show that DFT+U fails in correctly capturing the ground state for strong-field ligands yielding ΔEH-L that are almost constant throughout the molecular series. This bias toward high spin together with the metal/ligand charge transfer upon U correction are here quantified and explained using molecular orbital diagrams involving both σ- and π-bonding interactions. With increasing ligand-field strengths this bias also increases owing to the stronger molecular character of the metal/ligand Kohn-Sham orbitals thus resulting in large deviations from the reference larger than 4 eV. Smaller values of U can be employed to mitigate this effect and recover the right energetics.

SELECTION OF CITATIONS
SEARCH DETAIL