Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37893111

ABSTRACT

Left ventricle remodeling (LVR) after acute myocardial infarction (MI) leads to impairment of both systolic and diastolic function, a significant contributor to heart failure (HF). Despite extensive research in the field, predicting post-MI LVR and HF is still a challenge. Several circulant microRNAs have been proposed as LVR predictors; however, their clinical value is controversial. Here, we used real-time quantitative PCR to quantify the plasma levels of hsa-miR-101, hsa-miR-150, and hsa-miR-21 on the first day of hospital admission of MI patients with ST-elevation (STEMI). We analyzed their correlation to the patient's clinical and paraclinical variables and evaluated their ability to discriminate between post-MI LVR and non-LVR. We show that, despite being excellent MI discriminators, none of these microRNAs can distinguish between LVR and non-LVR patients. Furthermore, we found that diabetes mellitus (DM), Hb level, and the number of erythrocytes significantly influence all three plasma microRNA levels. This suggests that plasma microRNAs' diagnostic and prognostic value in STEMI patients should be reevaluated and interpreted in the context of associated pathologies.

2.
Biomedicines ; 11(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37626785

ABSTRACT

Left ventricle remodeling (LVR) after acute myocardial infarction (aMI) leads to impairment of both systolic and diastolic function, a major contributor to heart failure (HF). Despite extensive research, predicting post-aMI LVR and HF is still a challenge. Several circulant microRNAs have been proposed as LVR predictors; however, their clinical value is controversial. Here, we used real-time quantitative polymerase chain reaction (qRT-PCR) to quantify hsa-miR-22-3p (miR-22) plasma levels on the first day of hospital admission of ST-elevation aMI (STEMI) patients. We analyzed miR-22 correlation to the patients' clinical and paraclinical variables and evaluated its ability to discriminate between post-aMI LVR and non-LVR. We show that miR-22 is an excellent aMI discriminator and can distinguish between LVR and non-LVR patients. The discriminative performance of miR-22 significantly improves the predictive power of a multiple logistic regression model based on four continuous variables (baseline ejection fraction and end-diastolic volume, CK-MB, and troponin). Furthermore, we found that diabetes mellitus, hematocrit level, and the number of erythrocytes significantly influence its levels. These data suggest that miR-22 might be used as a predictor of ventricular function recovery in STEMI patients.

3.
Diagnostics (Basel) ; 11(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34574016

ABSTRACT

Myocardial infarction (MI) is one of the most frequent cardiac emergencies, with significant potential for mortality. One of the major challenges of the post-MI healing response is that replacement fibrosis could lead to left ventricular remodeling (LVR) and heart failure (HF). This process involves canonical and non-canonical transforming growth factor-beta (TGF-ß) signaling pathways translating into an intricate activation of cardiac fibroblasts and disproportionate collagen synthesis. Accumulating evidence has indicated that microRNAs (miRNAs) significantly contribute to the modulation of these signaling pathways. This review summarizes the recent updates regarding the molecular mechanisms underlying the role of the over 30 miRNAs involved in post-MI LVR. In addition, we compare the contradictory roles of several multifunctional miRNAs and highlight their potential use in pressure overload and ischemia-induced fibrosis. Finally, we discuss their attractive role as prognostic biomarkers for HF, highlighting the most relevant human trials involving these miRNAs.

SELECTION OF CITATIONS
SEARCH DETAIL