Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 4235-4251, 2024.
Article in English | MEDLINE | ID: mdl-38766661

ABSTRACT

Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results: Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion: In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.


Subject(s)
Cations , DNA , Plasmids , Plasmids/administration & dosage , Plasmids/chemistry , Humans , Cations/chemistry , DNA/chemistry , DNA/administration & dosage , Genetic Therapy/methods , Microfluidics/methods , Particle Size , Nanomedicine , COVID-19/prevention & control , Liposomes/chemistry , Transfection/methods , Nanoparticles/chemistry , SARS-CoV-2 , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Quaternary Ammonium Compounds/chemistry , Fatty Acids, Monounsaturated
2.
J Med Chem ; 67(10): 8396-8405, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38688030

ABSTRACT

Retinitis pigmentosa (RP) is a form of retinal degeneration affecting a young population with an unmet medical need. Photoreceptor degeneration has been associated with increased guanosine 3',5'-cyclic monophosphate (cGMP), which reaches toxic levels for photoreceptors. Therefore, inhibitory cGMP analogues attract interest for RP treatments. Here we present the synthesis of dithio-CN03, a phosphorodithioate analogue of cGMP, prepared using the H-phosphonothioate route. Two crystal modifications were identified as a trihydrate and a tetrahydrofuran monosolvates. Dithio-CN03 featured a lower aqueous solubility than its RP-phosphorothioate counterpart CN03, a drug candidate, and this characteristic might be favorable for sustained-release formulations aimed at retinal delivery. Dithio-CN03 was tested in vitro for its neuroprotective effects in photoreceptor models of RP. The comparison of dithio-CN03 to CN03 and its diastereomer SP-CN03, and to their phosphate derivative oxo-CN03 identifies dithio-CN03 as the compound with the highest efficacy in neuroprotection and thus as a promising new candidate for the treatment of RP.


Subject(s)
Cyclic GMP , Neuroprotective Agents , Retinal Rod Photoreceptor Cells , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Retinal Degeneration/drug therapy , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/metabolism , Structure-Activity Relationship
3.
Front Cell Neurosci ; 18: 1343544, 2024.
Article in English | MEDLINE | ID: mdl-38370034

ABSTRACT

Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise.

4.
J Invest Dermatol ; 142(1): 201-211, 2022 01.
Article in English | MEDLINE | ID: mdl-34265328

ABSTRACT

Drug resistance mechanisms still characterize metastatic melanoma, despite the new treatments that have been recently developed. Targeting of the cGMP/protein kinase G pathway is emerging as a therapeutic approach in cancer research. In this study, we evaluated the anticancer effects of two polymeric-linked dimeric cGMP analogs able to bind and activate protein kinase G, called protein kinase G activators (PAs) 4 and 5. PA5 was identified as the most effective compound on melanoma cell lines as well as on patient-derived metastatic melanoma cells cultured as three-dimensional spheroids and in a zebrafish melanoma model. PA5 was able to significantly reduce cell viability, size, and invasion of melanoma spheroids. Importantly, PA5 showed a tumor-specific outcome because no toxic effect was observed in healthy melanocytes exposed to the cGMP analog. We defined that by triggering protein kinase G, PA5 interfered with the EGF pathway as shown by lower EGFR phosphorylation and reduction of activated, phosphorylated forms of protein kinase B and extracellular signal‒regulated kinase 1/2 in melanoma cells. Finally, PA5 significantly reduced the metastatic process in zebrafish. These studies open future perspectives for the cGMP analog PA5 as a potential therapeutic strategy for melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/pharmacology , Melanocytes/physiology , Melanoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Skin Neoplasms/metabolism , Animals , Cell Death/drug effects , Cell Line, Tumor , Cyclic GMP/analogs & derivatives , Drug Resistance, Neoplasm , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Phosphorylation , Signal Transduction , Zebrafish
5.
J Mol Graph Model ; 110: 108076, 2022 01.
Article in English | MEDLINE | ID: mdl-34798368

ABSTRACT

Rhodopsin is a light-sensitive transmembrane receptor involved in the visual transduction cascade. Among the several rhodopsin mutations related to retinitis pigmentosa (RP), those affecting the C-terminal VAPA-COOH motif that is implicated in rhodopsin trafficking from the Golgi to the rod outer segment are notably associated with more aggressive RP forms. However, molecular reasons for defective rhodopsin signaling due to VAPA-COOH mutations, which might include steric hindrance, physicochemical features and structural determinants, are yet unknown, thus limiting further drug design approaches. In this work, clinically relevant rhodopsin mutations at the P347 site within the VAPA-COOH motif were investigated by molecular dynamics (MD) simulations and compared to the wild-type (WT) system. In agreement with experimental evidence, conformational fluctuations of the intrinsically disordered C-terminal tail of WT and mutant rhodopsin were found not to affect the overall structure of the transmembrane domain, including binding to the retinal cofactor. The WT VAPA-COOH motif adopts a unique conformation that is not found in pathological mutants, suggesting that structural features could better explain the pathogenicity of P347 rhodopsin mutants than physicochemical or steric determinants. These results were confirmed by MD simulations in both membrane-embedded full-length opsin and membrane-free C-terminal deca-peptides, these latter becoming very useful and small-size model systems for further investigations of rhodopsin C-terminal mutations. Structural details elucidated in this work might facilitate the understanding of the pathological mechanisms of this class of rhodopsin mutants, which will be instrumental to the development of new therapeutic strategies.


Subject(s)
Retinitis Pigmentosa , Rhodopsin , Humans , Molecular Conformation , Molecular Dynamics Simulation , Mutation , Retinitis Pigmentosa/genetics , Rhodopsin/genetics
6.
Pharmaceutics ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36678654

ABSTRACT

A drawback in the development of treatments that can reach the retina is the presence of barriers in the eye that restrain compounds from reaching the target. Intravitreal injections hold promise for retinal delivery, but the natural defenses in the vitreous can rapidly degrade or eliminate therapeutic molecules. Injectable hydrogel implants, which act as a reservoir, can allow for long-term drug delivery with a single injection into the eye, but still suffer due to the fast clearance of the released drugs when traversing the vitreous and random diffusion that leads to lower pharmaceutic efficacy. A combination with HA-covered nanoparticles, which can be released from the gel and more readily pass through the vitreous to increase the delivery of therapeutic agents to the retina, represents an advanced and elegant way to overcome some of the limitations in eye drug delivery. In this article, we developed hybrid PLGA-Dotap NPs that, due to their hyaluronic acid coating, can improve in vivo distribution throughout the vitreous and delivery to retinal cells. Moreover, a hydrogel implant was developed to act as a depot for the hybrid NPs to better control and slow their release. These results are a first step to improve the treatment of retinal diseases by protecting and transporting the therapeutic treatment across the vitreous and to improve treatment options by creating a depot system for long-term treatments.

7.
Comput Struct Biotechnol J ; 19: 6020-6038, 2021.
Article in English | MEDLINE | ID: mdl-34849206

ABSTRACT

Failure of a protein to achieve its functional structural state and normal cellular location contributes to the etiology and pathology of heritable human conformational diseases. The autosomal dominant form of retinitis pigmentosa (adRP) is an incurable blindness largely linked to mutations of the membrane protein rod opsin. While the mechanisms underlying the noxious effects of the mutated protein are not completely understood, a common feature is the functional protein conformational loss. Here, the wild type and 39 adRP rod opsin mutants were subjected to mechanical unfolding simulations coupled to the graph theory-based protein structure network analysis. A robust computational model was inferred and in vitro validated in its ability to predict endoplasmic reticulum retention of adRP mutants, a feature linked to the mutation-caused misfolding. The structure-based approach could also infer the structural determinants of small chaperone action on misfolded protein mutants with therapeutic implications. The approach is exportable to conformational diseases linked to missense mutations in any membrane protein.

8.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208617

ABSTRACT

Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.


Subject(s)
Retinitis Pigmentosa/etiology , Retinitis Pigmentosa/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Biomarkers , Cell Line , Cells, Cultured , Cloning, Molecular , Disease Susceptibility , Eye Proteins/genetics , Eye Proteins/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Humans , Mice , Retinal Degeneration/drug therapy , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/pathology
9.
Pflugers Arch ; 473(9): 1339-1359, 2021 09.
Article in English | MEDLINE | ID: mdl-33728518

ABSTRACT

Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.


Subject(s)
Eye Diseases, Hereditary/genetics , Genetic Diseases, X-Linked/genetics , Myopia/genetics , Night Blindness/genetics , Retinitis Pigmentosa/genetics , Rhodopsin/chemistry , Rhodopsin/genetics , Animals , Crystallography, X-Ray/methods , Eye Diseases, Hereditary/metabolism , Genetic Diseases, X-Linked/metabolism , Humans , Myopia/metabolism , Night Blindness/metabolism , Protein Structure, Secondary , Retinitis Pigmentosa/metabolism , Rhodopsin/metabolism
10.
Int J Mol Sci ; 22(3)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503999

ABSTRACT

Inherited retinal degenerative diseases (IRDs), which ultimately lead to photoreceptor cell death, are characterized by high genetic heterogeneity. Many IRD-associated genetic defects affect 3',5'-cyclic guanosine monophosphate (cGMP) levels. cGMP-dependent protein kinases (PKGI and PKGII) have emerged as novel targets, and their inhibition has shown functional protection in IRDs. The development of such novel neuroprotective compounds warrants a better understanding of the pathways downstream of PKGs that lead to photoreceptor degeneration. Here, we used human recombinant PKGs in combination with PKG activity modulators (cGMP, 3',5'-cyclic adenosine monophosphate (cAMP), PKG activator, and PKG inhibitors) on a multiplex peptide microarray to identify substrates for PKGI and PKGII. In addition, we applied this technology in combination with PKG modulators to monitor kinase activity in a complex cell system, i.e. the retinal cell line 661W, which is used as a model system for IRDs. The high-throughput method allowed quick identification of bona fide substrates for PKGI and PKGII. The response to PKG modulators helped us to identify, in addition to ten known substrates, about 50 novel substrates for PKGI and/or PKGII which are either specific for one enzyme or common to both. Interestingly, both PKGs are able to phosphorylate the regulatory subunit of PKA, whereas only PKGII can phosphorylate the catalytic subunit of PKA. In 661W cells, the results suggest that PKG activators cause minor activation of PKG, but a prominent increase in the activity of cAMP-dependent protein kinase (PKA). However, the literature suggests an important role for PKG in IRDs. This conflicting information could be reconciled by cross-talk between PKG and PKA in the retinal cells. This must be explored further to elucidate the role of PKGs in IRDs.


Subject(s)
Carrier Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Susceptibility , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Amino Acid Sequence , Biomarkers , Carrier Proteins/chemistry , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Enzyme Activation , Genetic Predisposition to Disease , Humans , Kinetics , Protein Binding , Retinal Degeneration/pathology , Substrate Specificity
11.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056970

ABSTRACT

In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.

12.
Neural Regen Res ; 15(10): 1784-1791, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32246618

ABSTRACT

Inherited retinal degeneration is a major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Inherited retinal degeneration is characterized by high genetic and phenotypic heterogeneity with several genes mutated in patients affected by these genetic diseases. The high genetic heterogeneity of these diseases hampers the development of effective therapeutic interventions for the cure of a large cohort of patients. Common cell demise mechanisms can be envisioned as targets to treat patients regardless the specific mutation. One of these targets is the increase of intracellular calcium ions, that has been detected in several murine models of inherited retinal degeneration. Recently, neurotrophic factors that favor the efflux of calcium ions to concentrations below toxic levels have been identified as promising molecules that should be evaluated as new treatments for retinal degeneration. Here, we discuss therapeutic options for inherited retinal degeneration and we will focus on neuroprotective approaches, such as the neuroprotective activity of the Pigment epithelium-derived factor. The characterization of specific targets for neuroprotection opens new perspectives together with many questions that require deep analyses to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise by neuroprotection may represent a promising treatment strategy for retinal degeneration.

13.
Prog Retin Eye Res ; 74: 100772, 2020 01.
Article in English | MEDLINE | ID: mdl-31374251

ABSTRACT

The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.


Subject(s)
Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Animals , Apoptosis , Humans , Retinal Degeneration/pathology , Signal Transduction
14.
Mol Neurobiol ; 57(2): 589-599, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31401765

ABSTRACT

The majority of mutations in rhodopsin (RHO) cause misfolding of the protein and has been linked to degeneration of photoreceptor cells in the retina. A lot of attention has been set on targeting ER stress for the development of new therapies for inherited retinal degeneration caused by mutations in the RHO gene. Nevertheless, the cell death pathway activated by RHO misfolded protein is still debated. In this study, we analyzed the retina of the knock-in mouse expressing the P23H misfolded mutant RHO. We found persistent unfolded protein response (UPR) during degeneration. Interestingly, long-term stimulation of the PERK branch of ER stress had a protective effect by phosphorylating nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, associated with antioxidant responses. Otherwise, we provide evidence that increased intracellular calcium and activation of calpains strongly correlated with rod photoreceptor cell death. By blocking calpain activity, we significantly decreased the activation of caspase-7 and apoptosis-inducing factor (AIF), two cell death effectors, and cell demise, and effectively protected the retina from degeneration caused by the P23H dominant mutation in RHO.


Subject(s)
Apoptosis , Calpain/metabolism , Mutation/genetics , Photoreceptor Cells, Vertebrate/metabolism , Protein Folding , Rhodopsin/genetics , Animals , Apoptosis/drug effects , Calcium/metabolism , Endoplasmic Reticulum Stress/drug effects , Enzyme Activation/drug effects , Intracellular Space/metabolism , Mice, Inbred C57BL , Protein Folding/drug effects , Protein Kinase Inhibitors/pharmacology , Retinal Degeneration/pathology , Rhodopsin/chemistry , Rhodopsin/metabolism , Unfolded Protein Response/drug effects , eIF-2 Kinase/metabolism
15.
Adv Exp Med Biol ; 1185: 245-249, 2019.
Article in English | MEDLINE | ID: mdl-31884619

ABSTRACT

Many RD-causing mutations lead to a dysregulation of cyclic guanosine monophosphate (cGMP), making cGMP signalling a prime target for the development of new treatment approaches. We showed previously that an analogue of cGMP, which inhibited cGMP signalling targets, increased photoreceptor viability in three rodent RD models carrying different genetic defects, in different RD genes. This raises the question of the possible generality of this approach as a treatment for RD. Here, we review RD genes that can be associated with high cGMP and discuss which RD genes might be amenable to a treatment aimed at inhibiting excessive cGMP signalling.


Subject(s)
Cyclic GMP/chemistry , Photoreceptor Cells, Vertebrate/chemistry , Retinal Degeneration/genetics , Signal Transduction , Animals , Mutation
16.
Adv Exp Med Biol ; 1185: 311-316, 2019.
Article in English | MEDLINE | ID: mdl-31884630

ABSTRACT

Autosomal dominant retinitis pigmentosa (adRP) is mainly caused by mutations responsible for rhodopsin (RHO) misfolding. Although it was previously proved that unfolded RHO is retained into the endoplasmatic reticulum (ER) eliciting ER-stress, consequent mechanisms underlying photoreceptor degeneration need to be further clarified. Several animal models of RHO mutants have been developed for this purpose and for development of neuroprotective treatments. Here, we compared two of the most used models of adRP, the P23H mutant RHO transgenic and knock-in mouse models, in order to define which are their limits and potentials. Although they were largely used, the differences on the activation of the cell death pathways occurring in these two models still remain to be fully characterized. We present data proving that activation of calpains is a mechanism of cell death shared by both models and that molecules targeting calpains are neuroprotective. Conversely, the role of ER-stress contribution to cell death appears to be divergent and remains controversial.


Subject(s)
Calpain/metabolism , Cell Death , Endoplasmic Reticulum Stress , Retinitis Pigmentosa/pathology , Rhodopsin/metabolism , Animals , Disease Models, Animal , Gene Knock-In Techniques , Mice , Mice, Transgenic , Protein Folding , Retinal Degeneration , Retinitis Pigmentosa/enzymology , Rhodopsin/genetics
17.
Drug Discov Today ; 24(8): 1637-1643, 2019 08.
Article in English | MEDLINE | ID: mdl-30877076

ABSTRACT

The photoreceptors of the retina are afflicted by diseases that still often lack satisfactory treatment options. Although suitable drugs might be available in some cases, the delivery of these compounds into the eye and across the blood-retinal barrier remains a significant challenge for therapy development. Here, we review the routes of drug administration to the retina and highlight different options for drug delivery to the photoreceptor cells.


Subject(s)
Pharmaceutical Preparations/administration & dosage , Photoreceptor Cells, Vertebrate/drug effects , Retina/drug effects , Animals , Drug Delivery Systems/methods , Humans
18.
Methods Mol Biol ; 1834: 59-74, 2019.
Article in English | MEDLINE | ID: mdl-30324436

ABSTRACT

CRISPR/Cas9 is an efficient tool to knock down specific genes in various organisms. In this chapter, we describe how to assess knockdown of human rhodopsin (RHO) gene carrying the P23H mutation in vitro, in engineered HeLa cells, and in vivo, in P23H RHO transgenic mice. To this aim, we report two molecular assays: site-specific PCR on P23H RHO cells treated with CRISPR/Cas9 and Western blotting analysis on retinal cells prepared from P23H RHO transgenic mice electroporated with CRISPR/Cas9 and GFP plasmids.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Retina/cytology , Retina/metabolism , Animals , Cloning, Molecular , Computational Biology/methods , Fluorescent Antibody Technique , Gene Expression , Gene Knockdown Techniques , Gene Targeting , HeLa Cells , Humans , Mice , Polymerase Chain Reaction , RNA, Guide, Kinetoplastida , Rhodopsin/genetics
19.
iScience ; 4: 1-19, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240733

ABSTRACT

The autosomal dominant form of retinitis pigmentosa (adRP) is a blindness-causing conformational disease largely linked to mutations of rhodopsin. Molecular simulations coupled to the graph-based protein structure network (PSN) analysis and in vitro experiments were conducted to determine the effects of 33 adRP rhodopsin mutations on the structure and routing of the opsin protein. The integration of atomic and subcellular levels of analysis was accomplished by the linear correlation between indices of mutational impairment in structure network and in routing. The graph-based index of structural perturbation served also to divide the mutants in four clusters, consistent with their differences in subcellular localization and responses to 9-cis retinal. The stability core of opsin inferred from PSN analysis was targeted by virtual screening of over 300,000 anionic compounds leading to the discovery of a reversible orthosteric inhibitor of retinal binding more effective than retinal in improving routing of three adRP mutants.

20.
Adv Exp Med Biol ; 1074: 367-373, 2018.
Article in English | MEDLINE | ID: mdl-29721965

ABSTRACT

Photoreceptor cell death in inherited retinal degeneration is accompanied by over-activation of histone deacetylases (HDAC). Excessive HDAC activity is found both in primary rod degeneration (such as in the rd10 mouse) and in primary cone death, including the cone photoreceptor function loss 1 (cpfl1) mouse. We evaluated the potential of pharmacological HDAC inhibition to prevent photoreceptor degeneration in primary rod and cone degeneration. We show that a single in vivo treatment of cpfl1 mice with the HDAC inhibitor trichostatin A (TSA) resulted in a significant protection of cpfl1 mutant cones. Similarly, HDAC inhibition with the clinically approved HDAC inhibitor vorinostat (SAHA) resulted in a significant improvement of rod survival in rd10 retinal explant cultures. Altogether, these results highlight the feasibility of targeted neuroprotection in vivo and create hope to maintain vision in patients suffering from both rod and cone dystrophies.


Subject(s)
Cone-Rod Dystrophies/prevention & control , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Vorinostat/therapeutic use , Animals , Animals, Congenic , Cell Death , Cone-Rod Dystrophies/drug therapy , Cone-Rod Dystrophies/enzymology , Cone-Rod Dystrophies/genetics , Disease Models, Animal , Drug Evaluation, Preclinical , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Intravitreal Injections , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Organ Culture Techniques , Retinal Cone Photoreceptor Cells/drug effects , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/pathology , Vorinostat/administration & dosage , Vorinostat/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...