Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 144: 67-76, 2023 07 30.
Article in English | MEDLINE | ID: mdl-36115764

ABSTRACT

The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.


Subject(s)
Autism Spectrum Disorder , Selective Serotonin Reuptake Inhibitors , Pregnancy , Female , Infant, Newborn , Animals , Humans , Selective Serotonin Reuptake Inhibitors/pharmacology , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/epidemiology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain , Organoids
2.
Theriogenology ; 141: 134-141, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31541782

ABSTRACT

The effectiveness of the use of natriuretic peptide C (NPPC) in the blocking of meiosis has already been proven in several species. However, there are no reports on the use of NPPC in the activation of metabolic processes in embryos. Whereas modulations of cAMP concentrations alter the lipid metabolism of bovine oocytes, the present study aims to evaluate the effect of NPPC on the development, lipid content and transcript levels of genes related to lipid metabolism of IVP bovine embryos. For this purpose, ovaries were obtained from a slaughterhouse, and oocytes were fertilized in vitro (D0). From D5 of in vitro culture, embryos were treated with 100 nM NPPC (NPPC group) or with no NPPC (Control group) and evaluated in terms of Blastocyst (D7) and hatching rates (D10). For the assessment of the cytoplasmatic lipid amounts, blastocysts were stained with Sudan Black B dye. The embryonic lipid profile was investigated by electrospray ionization desorption-mass spectrometry (DESI-MS). The abundance of nine transcripts related to lipid metabolism were assessed using the Biomark HD system. For statistical analysis, blastocyst and hatching rates, lipid content by the Sudan Black B and variation of gene expression between groups were compared by Student t-test. For lipid profile analysis, principal component analysis (PCA) and fold-change were performed. The embryo lipid content was similar between NPPC (881 ±â€¯3.7) and Control (883 ±â€¯5.2) groups (p > 0.05). However, cholesteryl esters and TAGs were downregulated by NPPC at multiple levels according to the DESI-MS profiles. Of the analyzed genes, ELOVL6 and SREBF1 showed an up-regulation in the control group (p < 0.05), while CPT2 was observed to be up-regulated in the NPPC-treated embryos. There was no significant difference in the blastocyst production rate between NPPC (44.4%) and Control (42.4%), however the hatching rate at D10 was higher (p < 0.05) in the NPPC group (69.77%) when compared to the Control group (48.33%). These findings demonstrate that NPPC alters the mRNA expression of genes related to lipid metabolism and that it exerts a positive effect on the hatching rates of IVP Bos taurus indicus embryos.


Subject(s)
Cattle/embryology , Culture Media/chemistry , Embryo Culture Techniques/veterinary , Natriuretic Peptide, C-Type/pharmacology , Animals , Blastocyst/drug effects , Blastocyst/physiology , Cattle/genetics , Female , Fertilization in Vitro/veterinary , Gene Expression Regulation, Developmental/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Lipid Metabolism/drug effects , Lipids/chemistry , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Zygote ; 25(5): 575-582, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28693635

ABSTRACT

Methylation and acetylation of histone H3 at lysine 27 (H3K27) regulate chromatin structure and gene expression during early embryo development. While H3K27 acetylation (H3K27ac) is associated with active gene expression, H3K27 methylation (H3K27me) is linked to transcriptional repression. The aim of this study was to assess the profile of H3K27 acetylation and methylation (mono-, di- and trimethyl) during oocyte maturation and early development in vitro of porcine embryos. Oocytes/embryos were fixed at different developmental stages from germinal vesicle to day 8 blastocysts and submitted to an immunocytochemistry protocol to identify the presence and quantify the immunofluorescence intensity of H3K27ac, H3K27me1, H3K27me2 and H3K27me3. A strong fluorescent signal for H3K27ac was observed in all developmental stages. H3K27me1 and H3K27me2 were detected in oocytes, but the fluorescent signal decreased through the cleavage stages and rose again at the blastocyst stage. H3K27me3 was detected in oocytes, in only one pronucleus in zygotes, cleaved-stage embryos and blastocysts. The nuclear fluorescence signal for H3K27me3 increased from the 2-cell stage to 4-cell stage embryos, decreased at the 8-cell and morula stages and increased again in blastocysts. Different patterns of the H3K27me3 mark were observed at the blastocyst stage. Our results suggest that changes in the H3K27 methylation status regulate early porcine embryo development as previously shown in other species.


Subject(s)
Embryo Culture Techniques/methods , Embryo, Mammalian/metabolism , Histones/metabolism , Lysine/metabolism , Acetylation , Animals , Blastocyst/cytology , Blastocyst/metabolism , Embryo, Mammalian/embryology , Female , Methylation , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , Swine , Zygote/cytology , Zygote/metabolism
4.
PLoS One ; 10(3): e0119463, 2015.
Article in English | MEDLINE | ID: mdl-25760989

ABSTRACT

The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos.


Subject(s)
Blastocyst/cytology , Cattle/embryology , Culture Media/pharmacology , Embryo Culture Techniques/methods , Animals , Blastocyst/drug effects , Cattle/metabolism , Cell Death , Culture Media/chemistry , DNA Fragmentation/drug effects , Embryo, Mammalian/drug effects , Female , Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Membrane Potential, Mitochondrial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...