Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Neuron ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39270654

ABSTRACT

Incentives tend to drive improvements in performance. But when incentives get too high, we can "choke under pressure" and underperform right when it matters most. What neural processes might lead to choking under pressure? We studied rhesus monkeys performing a challenging reaching task in which they underperformed when an unusually large "jackpot" reward was at stake, and we sought a neural mechanism that might result in that underperformance. We found that increases in reward drive neural activity during movement preparation into, and then past, a zone of optimal performance. We conclude that neural signals of reward and motor preparation interact in the motor cortex (MC) in a manner that can explain why we choke under pressure.

2.
bioRxiv ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39185208

ABSTRACT

To generate movements, the brain must combine information about movement goal and body posture. Motor cortex (M1) is a key node for the convergence of these information streams. How are posture and goal information organized within M1's activity to permit the flexible generation of movement commands? To answer this question, we recorded M1 activity while monkeys performed a variety of tasks with the forearm in a range of postures. We found that posture- and goal-related components of neural population activity were separable and resided in nearly orthogonal subspaces. The posture subspace was stable across tasks. Within each task, neural trajectories for each goal had similar shapes across postures. Our results reveal a simpler organization of posture information in M1 than previously recognized. The compartmentalization of posture and goal information might allow the two to be flexibly combined in the service of our broad repertoire of actions.

3.
bioRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38260549

ABSTRACT

The manner in which neural activity unfolds over time is thought to be central to sensory, motor, and cognitive functions in the brain. Network models have long posited that the brain's computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate. We leveraged a brain-computer interface (BCI) to challenge monkeys to violate the naturally-occurring time courses of neural population activity that we observed in motor cortex. This included challenging animals to traverse the natural time course of neural activity in a time-reversed manner. Animals were unable to violate the natural time courses of neural activity when directly challenged to do so. These results provide empirical support for the view that activity time courses observed in the brain indeed reflect the underlying network-level computational mechanisms that they are believed to implement.

4.
bioRxiv ; 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37090659

ABSTRACT

Incentives tend to drive improvements in performance. But when incentives get too high, we can "choke under pressure" and underperform when it matters most. What neural processes might lead to choking under pressure? We studied Rhesus monkeys performing a challenging reaching task in which they underperform when an unusually large "jackpot" reward is at stake. We observed a collapse in neural information about upcoming movements for jackpot rewards: in the motor cortex, neural planning signals became less distinguishable for different reach directions when a jackpot reward was made available. We conclude that neural signals of reward and motor planning interact in the motor cortex in a manner that can explain why we choke under pressure. One-Sentence Summary: In response to exceptionally large reward cues, animals can "choke under pressure", and this corresponds to a collapse in the neural information about upcoming movements.

5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34426504

ABSTRACT

In high-stakes situations, people sometimes exhibit a frustrating phenomenon known as "choking under pressure." Usually, we perform better when the potential payoff is larger. However, once potential rewards get too high, performance paradoxically decreases-we "choke." Why do we choke under pressure? An animal model of choking would facilitate the investigation of its neural basis. However, it could be that choking is a uniquely human occurrence. To determine whether animals also choke, we trained three rhesus monkeys to perform a difficult reaching task in which they knew in advance the amount of reward to be given upon successful completion. Like humans, monkeys performed worse when potential rewards were exceptionally valuable. Failures that occurred at the highest level of reward were due to overly cautious reaching, in line with the psychological theory that explicit monitoring of behavior leads to choking. Our results demonstrate that choking under pressure is not unique to humans, and thus, its neural basis might be conserved across species.


Subject(s)
Airway Obstruction/physiopathology , Motor Skills/physiology , Pressure , Psychological Theory , Psychomotor Performance , Stress, Psychological/physiopathology , Animals , Macaca mulatta , Male
SELECTION OF CITATIONS
SEARCH DETAIL