Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834255

ABSTRACT

The human T-cell leukemia virus type 1 (HTLV-1) is the only known human oncogenic retrovirus. HTLV-1 can cause a type of cancer called adult T-cell leukemia/lymphoma (ATL). The virus is transmitted through the body fluids of infected individuals, primarily breast milk, blood, and semen. At least 5-10 million people in the world are infected with HTLV-1. In addition to ATL, HTLV-1 infection can also cause HTLV-I-associated myelopathy (HAM/TSP). ATL is characterized by a low viral expression and poor prognosis. The oncogenic mechanism triggered by HTLV-1 is extremely complex and the molecular pathways are not fully understood. However, viral regulatory proteins Tax and HTLV-1 bZIP factor (HBZ) have been shown to play key roles in the transformation of HTLV-1-infected T cells. Moreover, several studies have shown that the final fate of HTLV-1-infected transformed Tcell clones is the result of a complex interplay of HTLV-1 oncogenic protein expression with cellular transcription factors that subvert the cell cycle and disrupt regulated cell death, thereby exerting their transforming effects. This review provides updated information on the mechanisms underlying the transforming action of HTLV-1 and highlights potential therapeutic targets to combat ATL.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Adult , Female , Humans , Human T-lymphotropic virus 1/metabolism , Retroviridae Proteins/genetics , Retroviridae Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Carcinogenesis , Cell Transformation, Neoplastic/genetics
2.
ACS Omega ; 8(39): 36311-36320, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810686

ABSTRACT

Isoxazoline-carbocyclic monophosphate nucleotides were designed and synthesized through the chemistry of nitrosocarbonyl intermediates and stable anthracenenitrile oxide. Docking and molecular dynamics studies were first conducted for determining the best candidate for polymerase SARS-CoV-2 inhibition. The setup phosphorylation protocol afforded the nucleotides available for the biological tests. Preliminary inhibition and cytotoxicity assays were then performed, and the results showed a moderate activity of the nucleotides accompanied by cytotoxicity.

3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569490

ABSTRACT

Almond skins are known for their antioxidative and anti-inflammatory properties, which are mainly due to the presence of polyphenols. The aim of the present study was to evaluate the antioxidant and anti-inflammatory effects of almond skin extract (ASE) obtained from the Sicilian cultivar "Fascionello" and to evaluate the possible mechanisms of action using an in vitro model of human monocytic U937 cells as well as an in vivo model of carrageenan (CAR)-induced paw edema. The in vitro studies demonstrated that pretreatment with ASE inhibited the formation of ROS and apoptosis. The in vivo studies showed that ASE restored the CAR-induced tissue changes; restored the activity of endogenous antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione; and decreased neutrophil infiltration, lipid peroxidation, and the release of proinflammatory mediators. The anti-inflammatory and antioxidant effects of ASE could be associated with the inhibition of the pro-inflammatory nuclear NF-κB and the activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathways. In conclusion, almond skin could reduce the levels of inflammation and oxidative stress and could be beneficial in the treatment of several disorders.


Subject(s)
Antioxidants , Prunus dulcis , Humans , Antioxidants/metabolism , Carrageenan/adverse effects , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Oxidative Stress , NF-kappa B/metabolism , Edema/drug therapy
4.
Molecules ; 28(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175265

ABSTRACT

Metal-derived platinum complexes are widely used to treat solid tumors. However, systemic toxicity and tumor resistance to these drugs encourage further research into similarly effective compounds. Among others, organotin compounds have been shown to inhibit cell growth and induce cell death and autophagy. Nevertheless, the impact of the ligand structure and mechanisms involved in the toxicity of organotin compounds have not been clarified. In the present study, the biological activities of commercially available bis(tributyltin) oxide and tributyltin chloride, in comparison to those of specially synthesized tributyltin trifluoroacetate (TBT-OCOCF3) and of cisplatin, were assessed using cells with different levels of tumorigenicity. The results show that tributyltins were more cytotoxic than cisplatin in all the tested cell lines. NMR revealed that this was not related to the interaction with DNA but to the inhibition of glucose uptake into the cells. Moreover, highly tumorigenic cells were less susceptible than nontumorigenic cells to the nonunique pattern of death induced by TBT-OCOCF3. Nevertheless, tumorigenic cells became sensitive when cotreated with wortmannin and TBT-OCOCF3, although no concomitant induction of autophagy by the compound was detected. Thus, TBT-OCOCF3 might be the prototype of a family of potential anticancer agents.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Organotin Compounds , Trialkyltin Compounds , Cisplatin , Cell Line, Tumor , Trialkyltin Compounds/pharmacology , Antineoplastic Agents/pharmacology , Organotin Compounds/pharmacology
5.
Cell Death Differ ; 30(4): 885-896, 2023 04.
Article in English | MEDLINE | ID: mdl-36418547

ABSTRACT

Regulated cell death (RCD) plays an important role in the progression of viral replication and particle release in cells infected by herpes simplex virus-1 (HSV-1). However, the kind of RCD (apoptosis, necroptosis, others) and the resulting cytopathic effect of HSV-1 depends on the cell type and the species. In this study, we further investigated the molecular mechanisms of apoptosis induced by HSV-1. Although a role of caspase-8 has previously been suggested, we now clearly show that caspase-8 is required for HSV-1-induced apoptosis in a FADD-/death receptor-independent manner in both mouse embryo fibroblasts (MEF) and human monocytes (U937). While wild-type (wt) MEFs and U937 cells exhibited increased caspase-8 and caspase-3 activation and apoptosis after HSV-1 infection, respective caspase-8-deficient (caspase-8-/-) cells were largely impeded in any of these effects. Unexpectedly, caspase-8-/- MEF and U937 cells also showed less virus particle release associated with increased autophagy as evidenced by higher Beclin-1 and lower p62/SQSTM1 levels and increased LC3-I to LC3-II conversion. Confocal and electron microscopy revealed that HSV-1 stimulated a strong perinuclear multivesicular body response, resembling increased autophagy in caspase-8-/- cells, entrapping virions in cellular endosomes. Pharmacological inhibition of autophagy by wortmannin restored the ability of caspase-8-/- cells to release viral particles in similar amounts as in wt cells. Altogether our results support a non-canonical role of caspase-8 in both HSV-1-induced apoptosis and viral particle release through autophagic regulation.


Subject(s)
Herpesvirus 1, Human , Animals , Mice , Humans , Herpesvirus 1, Human/metabolism , Caspase 8/metabolism , Apoptosis , Autophagy , Virion/metabolism , Caspase 3/metabolism
6.
Life (Basel) ; 12(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36013309

ABSTRACT

Based on previous experience in our laboratory, we developed a real-time reverse transcriptase (RT) quantitative PCR (RT-qPCR) assay for the assessment of very low levels of HIV-1 RT activity. The RNA, acting as a template for reverse transcription into cDNA by HIV-1 RT, consisted of a synthetic RNA ad hoc generated by in vitro transcription and included a coding sequence for HSV-1 gD (gD-RNA-synt). Different conditions of variables involved in the RT-qPCR reaction, notably different amounts of gD-RNA-synt, different mixes of the reaction buffer, and different dNTP concentrations, were tested to optimize the assay. The results indicated that the gD-RNA-synt-based RT assay, in its optimized formulation, could detect a specific cDNA reverse transcription even in the presence of 1 × 10-9 U of HIV RT. This achievement greatly improved the sensitivity of the assay over previous versions. In summary, this constructed RT-qPCR assay may be considered a promising tool for providing accurate information on very low HIV-1 RT activity.

7.
Pathogens ; 9(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322208

ABSTRACT

Testing HIV-1 RNA in plasma by PCR is universally accepted as the ultimate standard to confirm diagnosis of HIV-1 infection and to monitor viral load in patients under treatment. However, in some cases, this assay could either underestimate or overestimate the replication capacity of a circulating or latent virus. In the present study, we performed the assessment of evaluating the HIV-1 reverse transcriptase (RT) activity by means of a new assay for the functional screening of the status of HIV-1 patients. To this purpose, we utilized, for the first time on blood samples, an adapted version of a real-time RT quantitative PCR assay, utilized to evaluate the HIV-1-RT inhibitory activity of compounds. The study analyzed blood samples from 28 HIV-1-infected patients, exhibiting a wide range of viremia and immunological values. Results demonstrated that plasma HIV-1 RT levels, expressed as cycle threshold values obtained with the assay under appraisal, were inversely and highly significantly correlated with the plasma HIV-1-RNA levels of the patients. Thus, an HIV-1 RT quantitative PCR assay was created which we describe in this study, and it may be considered as a promising basis for an additional tool capable of furnishing information on the functional virological status of HIV-1-infected patients.

8.
Pathogens ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369988

ABSTRACT

The human T cell leukemic/lymphotropic virus type 1 (HTLV-1), discovered several years ago, is the causative agent for a rapid progressive haematological malignancy, adult T cell leukemia (ATL), for debilitating neurological diseases and for a number of inflammatory based diseases. Although the heterogeneous features of the diseases caused by HTLV-1, a common topic concerning related therapeutic treatments relies on the use of antiretrovirals. This review will compare the different approaches and opinions in this matter, giving a concise overview of preclinical as well as clinical studies covering all the aspects of antiretrovirals in HTLV-1 infection. Studies will be grouped on the basis of the class of antiretroviral, putting together both pre-clinical and clinical results and generally following a chronological order. Analysis of the existing literature highlights that a number of preclinical studies clearly demonstrate that different classes of antiretrovirals, already utilized as anti-HIV agents, are actually capable to efficiently contrast HTLV-1 infection. Nevertheless, the results of most of the clinical studies are generally discouraging on the same point. In conclusion, the design of new antiretrovirals more specifically focused on HTLV-1 targets, and/or the establishment of early treatments with antiretrovirals could hopefully change the perspectives of diseases caused by HTLV-1.

9.
ChemistryOpen ; 9(5): 519-528, 2020 05.
Article in English | MEDLINE | ID: mdl-32373422

ABSTRACT

Two new families of N,O-nucleoside analogues containing the anthracene moiety introduced through the nitrosocarbonyl ene reaction with allylic alcohols were prepared. The core structure is an isoxazolidine heterocycle that introduces either atom either a phenyl ring or dimethyl moiety at the C3 carbon. Different heterobases were inserted at the position 5 of the heterocyclic ring. One of the synthesized compounds demonstrated a good capacity to induce cell death and an appreciable nuclear fragmentation was evidenced in treated cells.


Subject(s)
Apoptosis/drug effects , Nucleosides/chemical synthesis , Nucleosides/metabolism , Anthracenes/chemistry , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemistry , Propanols/chemistry , Structure-Activity Relationship , U937 Cells
10.
Cell Death Discov ; 6: 9, 2020.
Article in English | MEDLINE | ID: mdl-32123585

ABSTRACT

Adult T cell leukemia/lymphoma (ATL) can be susceptible, at least transiently, to treatments with azidothymidine (AZT) plus IFNα and/or arsenic trioxide. However, the real role of AZT in this effect is still unclear. In fact, while reverse transcriptase (RT) inhibition could explain reduction of clonal expansion and of renewal of HTLV-1 infected cells during ATL progression, this effect alone seems insufficient to justify the evident and prompt decrease of the pro-viral load in treated patients. We have previously demonstrated that AZT is endowed with an intrinsic pro-apoptotic potential towards both peripheral blood mononuclear cells from healthy donors or some tumor cell lines, but this cytotoxic potential cannot be fully achieved unless IκBα phosphorylation is inhibited. Since the constitutive activation of NF-kappa B (NF-κB) appears a common biological basis of HTLV-1-infected cells, a pharmacological inhibition of IκBα phosphorylation seems a potential strategy for treating and preventing HTLV-1 related pathologies. In this study, we have demonstrated that a combination treatment with the IκBα phosphorylation inhibitor Bay 11-7085 and AZT induced increased levels of regulated cell death (RCD) by apoptosis compared to the single treatments in HTLV-1 infected cells of different origin. Importantly, levels of RCD were considerably higher in infected cells in comparison with the uninfected ones. Inhibition of NF-κB activation following the combined treatment was confirmed by analysis of both gel-shift and functional activity of the NF-κB complex proteins, p65/p52. Moreover, a transcriptional analysis revealed that the addition of Bay 11-7085 to AZT treatment in HTLV-1-infected cells modified their transcriptional profile, by inducing the upregulation of some pro-apoptotic genes together with the downregulation of some anti-apoptotic genes. Our data suggest that addition of adequate concentrations of IκBα phosphorylation inhibitor to therapeutic regimens including AZT could be a promising strategy in ATL.

11.
Infect Genet Evol ; 76: 104068, 2019 12.
Article in English | MEDLINE | ID: mdl-31614212

ABSTRACT

Although the epidemiology of pathogenic Candida species causing invasive human diseases is changing, Candida albicans still remains the most common cause of bloodstream infections worldwide. The propensity of this pathogen to cause infections is undoubtedly the result of its unique genetic plasticity that allow it to adapt and respond quickly to a myriad of changing conditions both in the host and in the environment. For this reason, we decided to investigate the genetic diversity of this important fungal pathogen in a particular category of patients with severe neurological deficits including the hospital environments where they are hospitalized. Genetic diversity of 21 C. albicans isolates recovered from blood, hands of healthcare workers and hospital environments was evaluated by using multilocus sequence typing (MLST) which revealed a high genetic heterogeneity with a set of 18 diploid sequence types (DSTs) recovered among 21 isolates investigated. Interestingly, 13 of these 18 MLST genotypes were completely new and added to the C. albicans MLST central database. Six eBURST clonal complexes (CC-1, CC-2, CC-6, CC-9, CC-27 and CC-42) and three singletons contained all DSTs found in this study. Among all the new DSTs identified, DST3388 was the most intriguing as this genotype was recovered from a typical C. albicans isolate clustering within the MLST-Clade 13, the most divergent evolutionary lineage within C. albicans population containing only isolates with unusual phenotypes originally known as Candida africana. In conclusion, the results of this study expand our understanding of the molecular epidemiology and global population structure of C. albicans suggesting that further studies on different categories of patients and hospital environments are needed to better understand how the population of this species adapts and evolves in heterogeneous hosts and changing environments.


Subject(s)
Brain Injuries/microbiology , Candida albicans/classification , Candidiasis/diagnosis , Multilocus Sequence Typing/methods , Candida albicans/genetics , Candida albicans/isolation & purification , Candidiasis/epidemiology , Environmental Microbiology , Evolution, Molecular , Female , Genetic Variation , Hand/microbiology , Health Personnel , Humans , Male , Mycological Typing Techniques , Phylogeny
12.
Viruses ; 11(5)2019 05 10.
Article in English | MEDLINE | ID: mdl-31083280

ABSTRACT

Herpes simplex virus 1 (HSV-1) can infect a wide range of cell types, including cells of the adaptive and innate immunity but, normally, it completes a fully-permissive replication cycle only in epithelial or neural cells. Complex mechanisms controlling this delicate balance in immune cells and consequent restriction of HSV-1 infection in these cells have not been completely elucidated. We have recently demonstrated that the transcription factor nuclear factor kappa B (NF-κB) can act as a main permissiveness regulator of HSV-1 infection in monocytic cells, however, mediators involved in this regulation have not been identified. To better define mechanisms involved in this phenomenon and, particularly, the possible involvement of ROS, wild type U937 cells or U937 cells stably transfected with a dominant-negative (DN) IκB-mutant and selenium-containing compounds, as anti-oxidants, were utilized. The main results can be summarized as follows. HSV-1 infection induces an immediate ROS production in U937 monocytic cells that can efficiently activate NF-κB but not in DN-IκB-mutant cells. Treatment with selenium-containing antioxidants efficiently inhibited HSV-1-induced ROS generation while producing increased levels of HSV-1 replication and a reduction of HSV-1-induced NF-κB activation in U937 monocytic cells. Our results suggest a scenario in which an efficient NF-κB-dependent ROS production in response to infection could contribute in limiting HSV-1 replication in monocytes/macrophages, thus avoiding possible irreparable damage to the innate immune system of the host during HSV-1 infection.


Subject(s)
Herpes Simplex/metabolism , Herpesvirus 1, Human/physiology , Monocytes/metabolism , NF-kappa B/metabolism , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Humans , NF-kappa B/genetics , Reactive Oxygen Species/metabolism , U937 Cells , Virus Replication
13.
Molecules ; 24(9)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052607

ABSTRACT

The pyrimidine nucleus is a versatile core in the development of antiretroviral agents. On this basis, a series of pyrimidine-2,4-diones linked to an isoxazolidine nucleus have been synthesized and tested as nucleoside analogs, endowed with potential anti-HIV (human immunodeficiency virus) activity. Compounds 6a-c, characterized by the presence of an ethereal group at C-3, show HIV reverse transcriptase (RT) inhibitor activity in the nanomolar range as well as HIV-infection inhibitor activity in the low micromolar with no toxicity. In the same context, compound 7b shows only a negligible inhibition of RT HIV.


Subject(s)
Drug Design , Pyrimidines/chemistry , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Chemistry Techniques, Synthetic , HIV-1/drug effects , HIV-1/enzymology , Humans , Models, Molecular , Molecular Structure , Protein Binding , Pyrimidines/chemical synthesis , Quantitative Structure-Activity Relationship , Reverse Transcriptase Inhibitors/chemical synthesis
14.
Appl Microbiol Biotechnol ; 102(23): 9925-9936, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30269214

ABSTRACT

The biology of HIV is rather complex due to high rate of replication, frequent recombination, and introduction of mutations. This gives rise to a number of distinct variants referred as quasispecies. In addition, the latency within reservoir allows the periodic reactivation of virus replication. The rapid replication of HIV allows immune response escape and establishment of resistance to therapy that can be acquired through drug selection and/or transmitted among individuals. This prompted, over the years, the development of a range of assays aimed to determine drug resistance and sensitivity, to be used both in clinical practice and in antiviral research. Reverse transcriptase (RT) inhibitors have an eminent place among the anti-HIV drugs, being constantly present from the beginning until today in the most commonly used antiviral regimens. This mini-review seeks to provide an up-to-date overview of recent efforts in developing even more reliable and simple methods, of both genotypic and phenotypic types, for specifically detecting drug resistance and sensitivity to RT inhibitors.


Subject(s)
Diagnostic Tests, Routine , Drug Resistance, Multiple, Viral , HIV-1/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Genotyping Techniques , HIV Infections/drug therapy , HIV-1/physiology , Humans , Virus Replication
15.
Front Microbiol ; 9: 925, 2018.
Article in English | MEDLINE | ID: mdl-29867836

ABSTRACT

Human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia/lymphoma (ATL), HTLV-1 associated myelopathy (HAM/TSP), and of a number of inflammatory diseases with an estimated 10-20 million infected individuals worldwide. Despite a number of therapeutic approaches, a cure for ATL is still in its infancy. Conventional chemotherapy has short-term efficacy, particularly in the acute subtype. Allogeneic stem cell transplantation offers long-term disease control to around one third of transplanted patients, but few can reach to transplant. This prompted, over the past recent years, the conduction of a number of clinical trials using novel treatments. Meanwhile, new data have been accumulated on biological and molecular bases of HTLV-1 transforming and infecting activity. These data offer new rational for targeted therapies of ATL. Taking into account the double-face of ATL as an hematologic malignancy as well as a viral infectious disease, this Mini-Review seeks to provide an up-to-date overview of recent efforts in the understanding of the mechanisms involved in already used therapeutic regimens showing promising results, and in selecting novel drug targets for ATL.

16.
Front Microbiol ; 9: 679, 2018.
Article in English | MEDLINE | ID: mdl-29696003

ABSTRACT

Candida tropicalis is a pathogenic yeast that has emerged as an important cause of candidemia especially in elderly patients with hematological malignancies. Infections caused by this species are mainly reported from Latin America and Asian-Pacific countries although recent epidemiological data revealed that C. tropicalis accounts for 6-16.4% of the Candida bloodstream infections (BSIs) in Italy by representing a relevant issue especially for patients receiving long-term hospital care. The aim of this study was to describe the genetic diversity of C. tropicalis isolates contaminating the hands of healthcare workers (HCWs) and hospital environments and/or associated with BSIs occurring in patients with different neurological disorders and without hematological disease. A total of 28 C. tropicalis isolates were genotyped using multilocus sequence typing analysis of six housekeeping (ICL1, MDR1, SAPT2, SAPT4, XYR1, and ZWF1) genes and data revealed the presence of only eight diploid sequence types (DSTs) of which 6 (75%) were completely new. Four eBURST clonal complexes (CC2, CC10, CC11, and CC33) contained all DSTs found in this study and the CC33 resulted in an exclusive, well-defined, clonal cluster from Italy. In conclusion, C. tropicalis could represent an important cause of BSIs in long-term hospitalized patients with no underlying hematological disease. The findings of this study also suggest a potential horizontal transmission of a specific C. tropicalis clone through hands of HCWs and expand our understanding of the molecular epidemiology of this pathogen whose population structure is still far from being fully elucidated as its complexity increases as different categories of patients and geographic areas are examined.

17.
Appl Microbiol Biotechnol ; 101(22): 8249-8258, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28963576

ABSTRACT

Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV/drug effects , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Inhibitors/pharmacology , DNA, Complementary , HIV/enzymology , HIV/genetics , HIV Reverse Transcriptase/genetics , Humans , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcription/drug effects , Sensitivity and Specificity
18.
Appl Microbiol Biotechnol ; 101(20): 7487-7496, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28879435

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is responsible of common and widespread viral infections in humans through the world, and of rare, but extremely severe, clinical syndromes in the central nervous system. The emergence of resistant strains to drugs actually in use encourages the searching for novel antiviral compounds, including those of natural origin. In this study, the recently described poly-γ-glutamic acid (γ-PGA-APA), produced by the marine thermotolerant Bacillus horneckiae strain APA, and previously shown to possess biological and antiviral activity, was evaluated for its anti-HSV-1 and immunomodulatory properties. The biopolymer hindered the HSV-1 infection in the very early phase of virus replication. In addition, the γ-PGA-APA was shown to exert low cytotoxicity and noticeable immunomodulatory activities towards TNF-α and IL-1ß gene expression. Moreover, the capacity to positively modulate the transcriptional activity of the cytokine genes was paired with increased level of activation of the transcription factor NF-kB by γ-PGA-APA. Overall, as non-cytotoxic biopolymer able to contribute in the antiviral defense against HSV-1, γ-PGA-APA could lead to the development of novel natural drugs for alternative therapies.


Subject(s)
Antiviral Agents/pharmacology , Bacillus/metabolism , Cytokines/biosynthesis , Herpesvirus 1, Human/drug effects , Immunologic Factors/pharmacology , Polyglutamic Acid/analogs & derivatives , Virus Replication/drug effects , Antiviral Agents/isolation & purification , Bacillus/isolation & purification , Gene Expression/drug effects , Herpesvirus 1, Human/physiology , Immunologic Factors/isolation & purification , NF-kappa B/metabolism , Polyglutamic Acid/isolation & purification , Polyglutamic Acid/pharmacology , Transcription, Genetic/drug effects
19.
Blood Adv ; 1(12): 748-752, 2017 May 09.
Article in English | MEDLINE | ID: mdl-29296718

ABSTRACT

The therapeutic efficacy of the AZT and IFN combination in ATL presumably reflects the inhibition of RT-related functions.HTLV-1-RT activity from short-term cultured PBMCs may represent a predictive correlate of clinical response to AZT/IFN in ATL patients.

20.
Cell Death Dis ; 7(9): e2354, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27584793

ABSTRACT

The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells.


Subject(s)
Apoptosis , Cytoprotection , Herpesvirus 1, Human/physiology , Monocytes/cytology , Monocytes/virology , NF-kappa B/metabolism , Virus Replication , Animals , Antibodies, Neutralizing/pharmacology , Apoptosis/drug effects , Cytoprotection/drug effects , DNA/metabolism , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , I-kappa B Proteins/metabolism , Immunity, Innate/drug effects , Immunity, Innate/genetics , Interferon-alpha/pharmacology , Intracellular Membranes/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Monocytes/drug effects , Permeability , Protein Binding/drug effects , Transfection , Tumor Necrosis Factor-alpha/pharmacology , U937 Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...