Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Sci ; 333: 111745, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37244500

ABSTRACT

Desiccation-rehydration studies in cryptogams constitute an important tool to understand the relation of key physiological traits with species stress tolerance and environmental adaptability. Real-time monitoring of responses has been limited by the design of commercial or custom measuring cuvettes and difficulties in experimental manipulation. We developed a within-chamber rehydration method that allows to rewater the samples rapidly, without the need to open the chamber and take out the sample for manual rehydration by the investigator. Data is collected in real-time and simultaneously with an infrared gas-analyzer (LICOR-7000), a chlorophyll fluorometer (Maxi Imaging-PAM) and a proton transfer reaction time-of-flight mass-spectrometer (PTR-TOF-MS) for volatile organic compound emissions. The system was tested on four cryptogam species with contrasting ecological distributions. No major errors or kinetics disruptions were found during system testing and measurements. Our within-chamber rehydration method improved accuracy, as measurement periods were not lacking, and repeatability of the protocol by reducing error variance in sample manipulation. This method provides an improved technique to conduct desiccation-rehydration measurements, contributing to the standardization and accuracy of current existing methodologies. A close real-time and simultaneous monitoring of photosynthesis, chlorophyll fluorescence and volatile organic compound emission data, offers a novel perspective in the analysis of the cryptogam stress responses that is yet to be fully explored.


Subject(s)
Desiccation , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Photosynthesis/physiology , Chlorophyll , Fluid Therapy
2.
J Exp Bot ; 73(13): 4338-4361, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35536655

ABSTRACT

Desiccation-rehydration experiments have been employed over the years to evaluate desiccation tolerance of bryophytes (Bryophyta, Marchantiophyta, and Anthocerotophyta). Researchers have applied a spectrum of protocols to induce desiccation and subsequent rehydration, and a wide variety of techniques have been used to study desiccation-dependent changes in bryophyte molecular, cellular, physiological, and structural traits, resulting in a multifaceted assortment of information that is challenging to synthesize. We analysed 337 desiccation-rehydration studies, providing information for 351 species, to identify the most frequent methods used, analyse the advances in desiccation studies over the years, and characterize the taxonomic representation of the species assessed. We observed certain similarities across methodologies, but the degree of convergence among the experimental protocols was surprisingly low. Out of 52 bryophyte orders, 40% have not been studied, and data are lacking for multiple remote or difficult to access locations. We conclude that for quantitative interspecific comparisons of desiccation tolerance, rigorous standardization of experimental protocols and measurement techniques, and simultaneous use of an array of experimental techniques are required for a mechanistic insight into the different traits modified in response to desiccation. New studies should also aim to fill gaps in taxonomic, ecological, and spatial coverage of bryophytes.


Subject(s)
Bryophyta , Desiccation , Bryophyta/physiology , Fluid Therapy
3.
J Exp Bot ; 72(22): 7846-7862, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34329386

ABSTRACT

Due to the importance of Rubisco in the biosphere, its kinetic parameters have been measured by different methodologies in a large number of studies over the last 60 years. These parameters are essential to characterize the natural diversity in the catalytic properties of the enzyme and they are also required for photosynthesis and cross-scale crop modeling. The present compilation of Rubisco kinetic parameters in model species revealed a wide intraspecific laboratory-to-laboratory variability, which was partially solved by making corrections to account for differences in the assay buffer composition and in the acidity constant of dissolved CO2, as well as for differences in the CO2 and O2 solubilities. Part of the intraspecific variability was also related to the different analytical methodologies used. For instance, significant differences were found between the two main methods for the determination of the specificity factor (Sc/o), and also between Rubisco quantification methods, Rubisco purification versus crude extracts, and single-point versus CO2 curve measurements for the carboxylation turnover rate (kcatc) determination. Causes of the intraspecific laboratory-to-laboratory variability for Rubisco catalytic traits are discussed. This study provides a normalized kinetic dataset for model species to be used by the scientific community. Corrections and recommendations are also provided to reduce measurement variability, allowing the comparison of kinetic data obtained in different laboratories using different assay conditions.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Kinetics , Phenotype , Photosynthesis , Ribulose-Bisphosphate Carboxylase/metabolism
5.
Fungal Biol ; 124(10): 892-902, 2020 10.
Article in English | MEDLINE | ID: mdl-32948277

ABSTRACT

Accurate species delimitation has a pivotal role in conservation biology, and it is especially important for threatened species where decisions have political and economic consequences. Finding and applying appropriate character sets and analytical tools to resolve interspecific relationships remains challenging in lichenized fungi. The main aim of our study was to re-assess the species boundaries between Usnea subfloridana and Usnea florida, which have been phylogenetically indistinguishable until now, but are different in reproductive mode and ecological preferences, using fungal-specific simple sequence repeats (SSR), i.e. microsatellite markers. Bayesian clustering analysis, discriminant analysis of principal components (DAPC), minimal spanning network (MSN), and principal component analysis (PCA) failed to separate U. florida and U. subfloridana populations. However, a low significant differentiation between the two taxa was observed across all populations according to AMOVA results. Also, analysis of shared haplotypes and statistical difference in clonal diversity (M) supported the present-day isolation between the apotheciate U. florida and predominantly sorediate U. subfloridana. Our results do not provide a clear support either for the separation of species in this pair or the synonymization of U. florida and U. subfloridana. We suggest that genome-wide data could help resolve the taxonomic question in this species pair.


Subject(s)
Microsatellite Repeats , Phylogeny , Usnea/classification , Bayes Theorem , Parmeliaceae
6.
New Phytol ; 227(5): 1362-1375, 2020 09.
Article in English | MEDLINE | ID: mdl-32034954

ABSTRACT

The popular dual definition of lichen symbiosis is under question with recent findings of additional microbial partners living within the lichen body. Here we compare the distribution and co-occurrence patterns of lichen photobiont and recently described secondary fungus (Cyphobasidiales yeast) to evaluate their dependency on lichen host fungus (mycobiont). We sequenced the nuclear internal transcribed spacer (ITS) strands for mycobiont, photobiont, and yeast from six widespread northern hemisphere epiphytic lichen species collected from 25 sites in Switzerland and Estonia. Interaction network analyses and multivariate analyses were conducted on operational taxonomic units based on ITS sequence data. Our study demonstrates the frequent presence of cystobasidiomycete yeasts in studied lichens and shows that they are much less mycobiont-specific than the photobionts. Individuals of different lichen species growing on the same tree trunk consistently hosted the same or closely related mycobiont-specific Trebouxia lineage over geographic distances while the cystobasidiomycete yeasts were unevenly distributed over the study area - contrasting communities were found between Estonia and Switzerland. These results contradict previous findings of high mycobiont species specificity of Cyphobasidiales yeast at large geographic scales. Our results suggest that the yeast might not be as intimately associated with the symbiosis as is the photobiont.


Subject(s)
Lichens , Phylogeny , Saccharomyces cerevisiae , Switzerland , Symbiosis
7.
Fungal Biol ; 123(2): 125-139, 2019 02.
Article in English | MEDLINE | ID: mdl-30709518

ABSTRACT

The lichen genus Cetrelia represents a taxonomically interesting case where morphologically almost uniform populations differ considerably from each other chemically. Similar variation is not uncommon among lichenized fungi, but it is disputable whether such populations should be considered entities at the species level. Species boundaries in Cetrelia are traditionally delimited either as solely based on morphology or as combinations of morpho- and chemotypes. A dataset of four nuclear markers (ITS, IGS, Mcm7, RPB1) from 62 specimens, representing ten Cetrelia species, was analysed within Bayesian and maximum likelihood frameworks. Analyses recovered a well-resolved phylogeny where the traditional species generally were monophyletic, with the exception of Cetrelia chicitae and Cetrelia pseudolivetorum. Species delimitation analyses supported the distinction of 15 groups within the studied Cetrelia taxa, dividing three traditionally identified species into some species candidates. Chemotypes, distinguished according to the major medullary substance, clearly correlated with clades recovered within Cetrelia, while samples with the same reproductive mode were dispersed throughout the phylogenetic tree. Consequently, delimiting Cetrelia species based only on reproductive morphology is not supported phylogenetically. Character analyses suggest that chemical characters have been more consistent compared to reproductive mode and indicate that metabolite evolution in Cetrelia towards more complex substances is probable.


Subject(s)
DNA, Fungal/genetics , Lichens/genetics , Parmeliaceae/genetics , Phylogeny , Cell Nucleus
8.
New Phytol ; 222(3): 1256-1270, 2019 05.
Article in English | MEDLINE | ID: mdl-30623444

ABSTRACT

Photosynthesis in bryophytes and lycophytes has received less attention than terrestrial plant groups. In particular, few studies have addressed the nonstomatal diffusion conductance to CO2 gnsd of these plant groups. Their lower photosynthetic rate per leaf mass area at any given nitrogen concentration compared with vascular plants suggested a stronger limitation by CO2 diffusion. We hypothesized that bryophyte and lycophyte photosynthesis is largely limited by low gnsd . Here, we studied CO2 diffusion inside the photosynthetic tissues and its relationships with photosynthesis and anatomical parameters in bryophyte and lycophyte species in Antarctica, Australia, Estonia, Hawaii and Spain. On average, lycophytes and, specially, bryophytes had the lowest photosynthetic rates and nonstomatal diffusion conductance reported for terrestrial plants. These low values are related to their very thick cell walls and their low exposure of chloroplasts to cell perimeter. We conclude that the reason why bryophytes lie at the lower end of the leaf economics spectrum is their strong nonstomatal diffusion conductance limitation to photosynthesis, which is driven by their specific anatomical characteristics.


Subject(s)
Bryophyta/anatomy & histology , Bryophyta/physiology , Lycopodiaceae/anatomy & histology , Lycopodiaceae/physiology , Photosynthesis , Plant Stomata/anatomy & histology , Plant Stomata/physiology , Biomass , Diffusion , Geography , Phylogeny
9.
Genome ; 59(9): 685-704, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27549737

ABSTRACT

Although lichens (lichen-forming fungi) play an important role in the ecological integrity of many vulnerable landscapes, only a minority of lichen-forming fungi have been barcoded out of the currently accepted ∼18 000 species. Regular Sanger sequencing can be problematic when analyzing lichens since saprophytic, endophytic, and parasitic fungi live intimately admixed, resulting in low-quality sequencing reads. Here, high-throughput, long-read 454 pyrosequencing in a GS FLX+ System was tested to barcode the fungal partner of 100 epiphytic lichen species from Switzerland using fungal-specific primers when amplifying the full internal transcribed spacer region (ITS). The present study shows the potential of DNA barcoding using pyrosequencing, in that the expected lichen fungus was successfully sequenced for all samples except one. Alignment solutions such as BLAST were found to be largely adequate for the generated long reads. In addition, the NCBI nucleotide database-currently the most complete database for lichen-forming fungi-can be used as a reference database when identifying common species, since the majority of analyzed lichens were identified correctly to the species or at least to the genus level. However, several issues were encountered, including a high sequencing error rate, multiple ITS versions in a genome (incomplete concerted evolution), and in some samples the presence of mixed lichen-forming fungi (possible lichen chimeras).


Subject(s)
DNA Barcoding, Taxonomic , Genetic Variation , High-Throughput Nucleotide Sequencing , Lichens/classification , Lichens/genetics , Biodiversity , Biological Evolution , Computational Biology , Consensus Sequence , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Molecular Typing/instrumentation , Molecular Typing/methods , Phylogeny , Sequence Analysis, DNA
10.
New Phytol ; 208(4): 1217-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26299211

ABSTRACT

We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes.


Subject(s)
Biological Evolution , Genes, Fungal , Lichens/genetics , Parmeliaceae/genetics , Phylogeny , Symbiosis , Classification
11.
Am J Bot ; 101(12): 2169-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25480713

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Species boundaries in many organism groups are still in a state of flux, and for empirical species delimitation, finding appropriate character sets and analytical tools are among the greatest challenges. In the lichenized fungal genus Vulpicida, six morphologically circumscribed species have been distinguished, but phenotypic characters partly overlap for three of these and intermediate forms occur. We used a combination of phylogenetic strategies to delimit the species in this genus.• METHODS: Five DNA loci were sequenced and analyzed. Single-locus gene trees and a five-locus concatenated phylogeny were constructed to assess current Vulpicida species. Species boundaries were inferred from molecular data using two coalescent-based species delimitation methods (BP&P and Brownie) and from species trees reconstructed with three different algorithms (*BEAST, BEST, and STEM).• KEY RESULTS: The two species restricted to North America, Vulpicida canadensis and V. viridis, are clearly distinct in all analyses. The four other traditionally accepted species form two strongly supported, closely related species-level lineages within the core group of the genus. On the basis of these results, we propose four instead of the current six species in the genus: V. canadensis, V. juniperinus, V. pinastri, and V. viridis, while V. tilesii and V. tubulosus are reduced to synonymy under V. juniperinus.• CONCLUSIONS: Coalescent species delimitation and tree inference give consistent results for fully distinct Vulpicida species but not for diverging populations. Even the inconsistent results were informative, revealing developing isolation despite a complex history of recombination and incomplete lineage sorting.


Subject(s)
Ascomycota/genetics , DNA, Fungal/analysis , Lichens/genetics , Phylogeny , North America , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...