Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 41(8): 1085-1088, 2023 08.
Article in English | MEDLINE | ID: mdl-36604544

ABSTRACT

Current methods for epigenomic profiling are limited in their ability to obtain genome-wide information with spatial resolution. We introduce spatial ATAC, a method that integrates transposase-accessible chromatin profiling in tissue sections with barcoded solid-phase capture to perform spatially resolved epigenomics. We show that spatial ATAC enables the discovery of the regulatory programs underlying spatial gene expression during mouse organogenesis, lineage differentiation and in human pathology.


Subject(s)
Chromatin , Transposases , Animals , Humans , Mice , Chromatin/genetics , Transposases/genetics , Transposases/metabolism , Epigenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
2.
Nat Commun ; 13(1): 5475, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115838

ABSTRACT

The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgens/metabolism , Clone Cells/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Spatio-Temporal Analysis
3.
Nature ; 608(7922): 360-367, 2022 08.
Article in English | MEDLINE | ID: mdl-35948708

ABSTRACT

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.


Subject(s)
Clone Cells , DNA Copy Number Variations , Genomic Instability , Neoplasms , Spatial Analysis , Clone Cells/metabolism , Clone Cells/pathology , DNA Copy Number Variations/genetics , Early Detection of Cancer , Genome, Human , Genomic Instability/genetics , Genomics , Humans , Male , Models, Biological , Neoplasms/genetics , Neoplasms/pathology , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transcriptome/genetics
4.
Cancers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638322

ABSTRACT

Prostate cancer is a common cancer type in men, yet some of its traits are still under-explored. One reason for this is high molecular and morphological heterogeneity. The purpose of this study was to develop a method to gain new insights into the connection between morphological changes and underlying molecular patterns. We used artificial intelligence (AI) to analyze the morphology of seven hematoxylin and eosin (H&E)-stained prostatectomy slides from a patient with multi-focal prostate cancer. We also paired the slides with spatially resolved expression for thousands of genes obtained by a novel spatial transcriptomics (ST) technique. As both spaces are highly dimensional, we focused on dimensionality reduction before seeking associations between them. Consequently, we extracted morphological features from H&E images using an ensemble of pre-trained convolutional neural networks and proposed a workflow for dimensionality reduction. To summarize the ST data into genetic profiles, we used a previously proposed factor analysis. We found that the regions were automatically defined, outlined by unsupervised clustering, associated with independent manual annotations, in some cases, finding further relevant subdivisions. The morphological patterns were also correlated with molecular profiles and could predict the spatial variation of individual genes. This novel approach enables flexible unsupervised studies relating morphological and genetic heterogeneity using AI to be carried out.

5.
Nat Commun ; 9(1): 2419, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925878

ABSTRACT

Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor microenvironment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Transcriptome/genetics , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Computational Biology , Disease Progression , Gene Expression Profiling , Humans , Male , Prostate/cytology , Prostate/pathology , Prostate/surgery , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , RNA, Messenger/genetics , Stromal Cells/pathology , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL