Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Sci Rep ; 12(1): 6065, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410347

ABSTRACT

The JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.


Subject(s)
Drosophila melanogaster , Jumonji Domain-Containing Histone Demethylases , Animals , Drosophila melanogaster/metabolism , Histones/metabolism , Humans , Hydroxylation , Jumonji Domain-Containing Histone Demethylases/metabolism , Oxygenases/metabolism
2.
Sci Rep ; 11(1): 5662, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707581

ABSTRACT

OATP1B3 is expressed de novo in primary prostate cancer tissue and to a greater degree in prostate cancer metastases. Gadoxetate disodium is a substrate of OATP1B3, and its uptake has been shown to correlate with OATP1B3 expression in other cancers. We aimed to evaluate use of gadoxetate disodium to image prostate cancer and to track its utility as a biomarker. A single center open-label non-randomized pilot study recruited men with (1) localized, and (2) metastatic castration resistant prostate cancer (mCRPC). Gadoxetate disodium-enhanced MRI was performed at four timepoints post-injection. The Wilcoxon signed rank test was used to compare MRI contrast enhancement ratio (CER) pre-injection and post-injection. OATP1B3 expression was evaluated via immunohistochemistry (IHC) and a pharmacogenomic analysis of OATP1B3, NCTP and OATP1B1 was conducted. The mCRPC subgroup (n = 9) demonstrated significant enhancement compared to pre-contrast images at 20-, 40- and 60-min timepoints (p < 0.0078). The localized cancer subgroup (n = 11) demonstrated earlier enhancement compared to the mCRPC group, but no retention over time (p > 0.05). OATP1B3 expression on IHC trended higher contrast enhancement between 20-40 min (p ≤ 0.064) and was associated with contrast enhancement at 60 min (p = 0.0422). OATP1B1 haplotype, with N130D and V174A substitutions, impacted enhancement at 40-60 min (p ≤ 0.038). mCRPC lesions demonstrate enhancement after injection of gadoxetate disodium on MRI and retention over 60 min. As inter-individual variability in OATP1B3 expression and function has both predictive and prognostic significance, gadoxetate disodium has potential as a biomarker in prostate cancer.


Subject(s)
Gadolinium DTPA/chemistry , Magnetic Resonance Imaging , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Genotype , Humans , Male , Neoplasm Metastasis , Pilot Projects , Prostatic Neoplasms/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
3.
Molecules ; 25(23)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276504

ABSTRACT

Due to its antiangiogenic and anti-immunomodulatory activity, thalidomide continues to be of clinical interest despite its teratogenic actions, and efforts to synthesize safer, clinically active thalidomide analogs are continually underway. In this study, a cohort of 27 chemically diverse thalidomide analogs was evaluated for antiangiogenic activity in an ex vivo rat aorta ring assay. The protein cereblon has been identified as the target for thalidomide, and in silico pharmacophore analysis and molecular docking with a crystal structure of human cereblon were used to investigate the cereblon binding abilities of the thalidomide analogs. The results suggest that not all antiangiogenic thalidomide analogs can bind cereblon, and multiple targets and mechanisms of action may be involved.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Angiogenesis Inhibitors/pharmacology , Aorta/drug effects , Molecular Docking Simulation , Neovascularization, Physiologic/drug effects , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Ubiquitin-Protein Ligases/metabolism , Angiogenesis Inhibitors/chemistry , Animals , Computer Simulation , Humans , Male , Rats , Rats, Sprague-Dawley
4.
Nat Chem Biol ; 14(7): 688-695, 2018 07.
Article in English | MEDLINE | ID: mdl-29915238

ABSTRACT

Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.


Subject(s)
Biocatalysis , GTP Phosphohydrolases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , GTP Phosphohydrolases/chemistry , Humans , Hydroxylation , Jumonji Domain-Containing Histone Demethylases/chemistry , Models, Molecular
5.
Nat Chem Biol ; 14(10): 988, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29950663

ABSTRACT

In the version of this article initially published, authors Sarah E. Wilkins, Charlotte D. Eaton, Martine I. Abboud and Maximiliano J. Katz were incorrectly included in the equal contributions footnote in the affiliations list. Footnote number seven linking to the equal contributions statement should be present only for Suzana Markolovic and Qinqin Zhuang, and the statement should read "These authors contributed equally: Suzana Markolovic, Qinqin Zhuang." The error has been corrected in the HTML and PDF versions of the article.

6.
Nat Commun ; 9(1): 1675, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686330

ABSTRACT

The originally published version of this Article contained an error in the spelling of the author Md. Saiful Islam, which was incorrectly given as Saiful Islam. This has now been corrected in both the PDF and HTML versions of the Article.

7.
Nat Commun ; 9(1): 1180, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563586

ABSTRACT

Oxygenase-catalysed post-translational modifications of basic protein residues, including lysyl hydroxylations and Nε-methyl lysyl demethylations, have important cellular roles. Jumonji-C (JmjC) domain-containing protein 5 (JMJD5), which genetic studies reveal is essential in animal development, is reported as a histone Nε-methyl lysine demethylase (KDM). Here we report how extensive screening with peptides based on JMJD5 interacting proteins led to the finding that JMJD5 catalyses stereoselective C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6). High-resolution crystallographic analyses reveal overall fold, active site and substrate binding/product release features supporting the assignment of JMJD5 as an arginine hydroxylase rather than a KDM. The results will be useful in the development of selective oxygenase inhibitors for the treatment of cancer and genetic diseases.


Subject(s)
Arginine/chemistry , Carrier Proteins/chemistry , Histone Demethylases/chemistry , Membrane Proteins/chemistry , Ribosomal Protein S6/chemistry , Arginine/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Hydroxylation , Kinetics , Lysine/chemistry , Lysine/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosomal Protein S6/genetics , Ribosomal Protein S6/metabolism , Stereoisomerism , Substrate Specificity , Thermodynamics
8.
Chem Commun (Camb) ; 53(2): 440-442, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27965989

ABSTRACT

Nε-Trimethyllysine hydroxylase (TMLH) catalyses the first step in mammalian biosynthesis of carnitine, which plays a crucial role in fatty acid metabolism. The stereochemistry of the 3-hydroxy-Nε-trimethyllysine product of TMLH has not been defined. We report enzymatic and asymmetric synthetic studies, which define the product of TMLH catalysis as (2S,3S)-3-hydroxy-Nε-trimethyllysine.


Subject(s)
Carnitine/biosynthesis , Lysine/analogs & derivatives , Biocatalysis , Carnitine/chemistry , Humans , Lysine/chemistry , Lysine/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Models, Molecular , Protein Conformation , Stereoisomerism , Substrate Specificity
9.
Curr Opin Struct Biol ; 41: 62-72, 2016 12.
Article in English | MEDLINE | ID: mdl-27309310

ABSTRACT

The Jumonji-C (JmjC) subfamily of 2-oxoglutarate (2OG)-dependent oxygenases are of biomedical interest because of their roles in the regulation of gene expression and protein biosynthesis. Human JmjC 2OG oxygenases catalyze oxidative modifications to give either chemically stable alcohol products, or in the case of Nɛ-methyl lysine demethylation, relatively unstable hemiaminals that fragment to give formaldehyde and the demethylated product. Recent work has yielded conflicting reports as to whether some JmjC oxygenases catalyze N-methyl group demethylation or hydroxylation reactions. We review JmjC oxygenase-catalyzed reactions within the context of structural knowledge, highlighting key differences between hydroxylases and demethylases, which have the potential to inform on the possible type(s) of reactions catalyzed by partially characterized or un-characterized JmjC oxygenases in humans and other organisms.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Mixed Function Oxygenases/metabolism , Animals , Biocatalysis , Humans , Protein Multimerization , Structure-Activity Relationship
10.
J Biol Chem ; 290(34): 20712-20722, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26152730

ABSTRACT

The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N(ϵ)-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries.


Subject(s)
Dioxygenases/metabolism , Histone Demethylases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Mixed Function Oxygenases/metabolism , Protein Processing, Post-Translational , Bacteria/enzymology , Bacteria/genetics , Biocatalysis , Collagen/biosynthesis , Dioxygenases/genetics , Gene Expression , Histone Demethylases/genetics , Histones/metabolism , Humans , Hydroxylation , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Iron/metabolism , Mixed Function Oxygenases/genetics , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL