Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vet Parasitol ; 238: 5-16, 2017 Apr 30.
Article in English | MEDLINE | ID: mdl-28291603

ABSTRACT

Proliferative kidney disease (PKD) is an endoparasitic disease of salmonid fish caused by Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). This study presents a comprehensive view on PKD development in rainbow trout (Oncorhynchus mykiss) reared at an intensive fish breeding facility, with focus on mortality, pathology/histopathology, haematological findings and immune functions. Diseased and reference fish were sampled monthly and time course of natural infection was followed up from the onset of clinical signs (September 2014) to full recovery (January 2015). PKD- associated cumulative mortality was 30% with a peak value in October, while immunohistochemical testing indicated a continuous significant decrease in T. bryosalmonae numbers from September to December; with no parasites detected in January. During peak clinical infection, a significant decrease in red blood cell counts, haematocrit values, haemoglobin concentration, along with a reduction in lymphocytes and a significant phagocyte elevation corresponding with an increase in phagocyte oxidative burst were measured in comparison to control animals. Complement activity and total immunoglobulin plasma concentrations were also elevated, though only during the initial monitoring period (September). Individuals surviving PKD, recovered and were able to fully regenerate both renal structure and haematopoietic parameters to normal levels. Changes in the red blood cell parameters indicate anaemia and a decreased oxygen transportation capacity during the clinical disease phase. Together with an increased oxygen demand at higher temperatures and decreased oxygen solubility this could lead to decompensation and elevated mortality. The stimulation of immune parameters, and especially oxidative phagocytic burst, is likely to have had a strong effect on both, regeneration and elimination of the pathogenic agent.


Subject(s)
Disease Susceptibility/veterinary , Fish Diseases/parasitology , Kidney Diseases/veterinary , Myxozoa/physiology , Oncorhynchus mykiss/parasitology , Parasitic Diseases, Animal/parasitology , Animals , Aquaculture , Disease Outbreaks/veterinary , Kidney Diseases/pathology , Temperature
2.
Fish Shellfish Immunol ; 60: 458-465, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27840172

ABSTRACT

The T-2 toxin, a fungal metabolite produced by Fusarium molds, occurs in a range of agriculture products. Reduced availability of fish meal has led to increasing use of cereals as a source of protein in commercial aquaculture feeds, which has increased the potential for mycotoxin contamination. The purpose of this study was to investigate toxicity of T-2 toxin intake in common carp (Cyprinus carpio L.) using haematological, biochemical and immunological parameters and oxidative stress indices. In a four-week feeding trial, fish were fed a commercial diet with 5.3 mg/kg T-2 toxin added. Ingestion of contaminated diet did not lead to mortality of fish, probably due to lower feed intake. On the other hand, it significantly affected haematological variables such as haematocrit, haemoglobin, red blood cell counts leading to anemia and white blood cell counts leading to leukopenia due to lymphopenia. Plasma glucose concentration and alanine amino transferase activity showed a significant increase while triglycerides concentration decreased. Activity of ceruloplasmin was significantly decreased in plasma. Further, liver glutathione S-transferase activity was significantly increased and catalase activity decreased, in parallel with a significant increase in caudal kidney catalase activity and a decrease in glutathione peroxidase activity. Finally, lipid peroxidation (detected as malondialdehyde) was significantly increased in the liver and caudal kidney. Changes in non-specific immune response and cytokine levels in head kidney indicated immune system sensitivity to T-2 toxin. Overall, the results demonstrate that this feed-borne mycotoxin is able to induce anaemia and oxidative stress and cause changes in the immune response of common carp.


Subject(s)
Carps/physiology , Immunity, Innate/drug effects , Oxidative Stress/drug effects , T-2 Toxin/toxicity , Animal Feed/analysis , Animals , Carps/immunology , Diet/veterinary , Hematologic Tests/veterinary
3.
Fish Shellfish Immunol ; 57: 400-405, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27566100

ABSTRACT

Despite the high number of studies concerning seasonality of immune response in fish, information for some fish species is still scarce. Here, we assess seasonal changes in leukocyte counts and several immune parameters in three groups of farmed salmonids, i.e. brook trout (Salvelinus fontinalis), brook trout x Arctic charr hybrids (Salvelinus fontinalis x Salvelinus alpinus alpinus) and rainbow trout (Oncorhynchus mykiss) reared under the same conditions and fed with the same feed. Fish were sampled in five periods of the year (late April, early July, late August, early November and early February) and leukocyte counts, respiratory burst of blood phagocytes, lysozyme concentration in skin mucus and total complement activity were measured. Generalized linear models using fish body length as a continuous predictor and sampling period and fish species as categorical predictors, were significant for each of the parameters analysed. The highest seasonal variations in measured parameters were found in rainbow trout and lowest in hybrids. Our results confirm that measures of innate and adaptive immunity are strongly affected by season in all three groups of salmonids. The results will contribute to the improved assessment of immunocompetence in farmed fishes, essential for future sustainable development in aquaculture.


Subject(s)
Complement System Proteins/metabolism , Muramidase/metabolism , Respiratory Burst , Seasons , Trout/immunology , Animals , Hybridization, Genetic , Leukocyte Count/veterinary , Mucus/chemistry , Oncorhynchus mykiss/immunology , Phagocytes/immunology , Skin/chemistry
4.
Biotechnol Adv ; 33(6 Pt 2): 1162-76, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25689073

ABSTRACT

In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging.


Subject(s)
Drug Delivery Systems , Ferric Compounds/chemistry , Magnetic Resonance Imaging , Magnetics , Nanoparticles/chemistry , Biotechnology
5.
Neuro Endocrinol Lett ; 36 Suppl 1: 64-7, 2015.
Article in English | MEDLINE | ID: mdl-26757113

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate and compare the rate of degradation and elimination of praziquantel and fenbendazole antiparasitics following oral administration to salmonids. In addition, we determine whether the length of the legal withdrawal period is sufficient for complete elimination of antiparasitic residue from the body. The use of these drugs in fish is currently considered off-label and data on degradation are not available for rainbow trout. METHODS: The model species for this experiment was the rainbow trout (Oncorhynchus mykiss) and praziquantel and fenbendazole were chosen for experimental therapy. Both drugs were administered into the gastrointestinal tract using a stomach tube. Concentrations of fenbendazole and praziquantel were established through high performance liquid chromatography-tandem mass spectrometry. RESULTS: Our results show that concentrations of praziquantel and fenbendazole reach their maximum in the body within 24 hours of administration, with concentrations dropping sharply over the following 24 hours. With one exception, when trace amounts of both substances were found in blood plasma, the drugs were completely degraded and eliminated from the body by the end of the experiment (corresponding to 497.6 degree days). CONCLUSIONS: Praziquantel and fenbendazole both show a high rate of degradation and elimination from fish. As both substances were eliminated from the body within the required withdrawal period (i.e. within 500 degree days) they can be safely used based on current knowledge of their therapeutic effect for treating helminth infections.


Subject(s)
Antinematodal Agents/pharmacokinetics , Fenbendazole/pharmacokinetics , Oncorhynchus mykiss/metabolism , Praziquantel/pharmacokinetics , Administration, Oral , Animals , Anthelmintics/pharmacokinetics , Chromatography, Liquid
6.
Neuro Endocrinol Lett ; 36 Suppl 1: 57-63, 2015.
Article in English | MEDLINE | ID: mdl-26757114

ABSTRACT

OBJECTIVES: Under environmental conditions, fish are simultaneously exposed to multiple stressors. This study provides new knowledge on the effects of controlled exposure to multiple stressors, namely cyanobacterial biomass and food contaminated with arsenic. METHODS: Rainbow trout were divided into six groups of 25 fish and exposed to different contaminant combinations for 30 days: 1) control group, 2) cyanobacterial biomass, 3 & 4) two groups exposed to arsenic at concentrations of 5 mg.kg(-1) and 50 mg.kg(-1) fish feed, and 5 & 6) two groups exposed to cyanobacterial biomass and arsenic combined. We then evaluated pathological, haematological and immunological parameters at 10, 20 and 30 days after exposure. RESULTS: Marked gross pathological findings were present in groups exposed to arsenic and arsenic/cyanobacteria after 30 days. A strong decrease in haemoglobin concentration was observed in all experimental groups receiving arsenic after 10 days exposure. Total leukocyte count increased markedly in fish exposed to cyanobacterial biomass, and to higher arsenic concentrations by the end of the experiment. Neutrophils decreased significantly at the end of exposure. Similarly, exposure to cyanobacteria and/or arsenic led to suppression of opsonised zymosan particle-induced neutrophil respiratory bursts. CONCLUSIONS: Our results demonstrate that the effects of exposure to toxic cyanobacterial biomass and arsenic on fish are enhanced when the contaminants are combined. In particular, long-term exposure led to disturbances in the white blood-cell count. Modulation of phagocytosis, which is the first line of defence against invading pathogens, suggests that the combined action leads to a decreased ability to control infection.


Subject(s)
Arsenic/pharmacology , Bacterial Infections/blood , Carcinogens/pharmacology , Erythrocyte Indices/drug effects , Microcystins/pharmacology , Microcystis , Neutrophils/drug effects , Oncorhynchus mykiss/blood , Animals , Bacterial Infections/immunology , Bacterial Infections/pathology , Cyanobacteria , Iron/blood , Leukocyte Count , Neutrophils/immunology , Oncorhynchus mykiss/immunology , Phagocytes/drug effects , Phagocytes/immunology
7.
J Chromatogr A ; 1364: 59-63, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25219523

ABSTRACT

During the last years, several authors have focused on the characterization of the size and charge of the nanoparticles by capillary electrophoresis. However, considering that nanoparticles are generally suspended in a solvent different from those commonly used as background electrolytes (BGE), an appropriate characterization of the behavior of the nanoparticles in the sample-BGE interface is required, as this might affect the overall electrophoretic behavior of the nanoparticles. In the present work, we address the evaluation of the behavior of COOH-coated maghemite nanoparticles in the vicinity of a pH boundary. To do so, different suspensions of nanoparticles prepared in acid media were injected into a borate/NaOH pH 9.5 BGE. The formation and evolution of boundaries in the sample-BGE interface in such systems was modeled by computer simulation. A systematic evaluation of the effect that parameters such as the co-ion, the sample pH or the injection time have on the electrophoretic behavior of the nanoparticles was carried out.


Subject(s)
Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Computer Simulation , Electrophoresis, Capillary/instrumentation , Hydrogen-Ion Concentration
8.
Anal Chem ; 86(22): 11107-14, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25260194

ABSTRACT

Development of methods allowing determination of even ultralow levels of immunoglobulins in various clinical samples including whole human blood and plasma is a particular scientific challenge, especially due to many essential discoveries in the fields of immunology and medicine in the past few decades. The determination of IgG is usually performed using an enzymatic approach, followed by colorimetric or fluorimetric detection. However, limitations of these methods relate to their complicated setup and stringent requirements concerning the sample purity. Here, we present a novel approach based on magnetically assisted surface enhanced Raman spectroscopy (MA/SERS), which utilizes a Fe3O4@Ag@streptavidin@anti-IgG nanocomposite with strong magnetic properties and an efficient SERS enhancement factor conferred by the Fe3O4 particles and silver nanoparticles, respectively. Such a nanocomposite offers the possibility of separating a target efficiently from a complex matrix by simple application of an external magnetic force, followed by direct determination using SERS. High selectivity was achieved by the presence of anti-IgG on the surface of silver nanoparticles coupled with their further inactivation by ethylamine. Compared to many recently developed sandwich methods, application of single nanocomposites showed many advantages, including simplicity of use, direct control of the analytic process, and elimination of errors caused by possible nonspecific interactions. Moreover, incorporation of advanced spectral processing methods led to a considerable decrease in the relative error of determination to below 5%.


Subject(s)
Immunoglobulin G/blood , Magnetic Phenomena , Nanocomposites/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Humans , Surface Properties
9.
Anal Chem ; 86(6): 2939-46, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24555681

ABSTRACT

The dopaminergic neural system is a crucial part of the brain responsible for many of its functions including mood, arousal, and other roles. Dopamine is the key neurotransmitter of this system, and a determination of its level presents a demanding task needed for a deeper understanding of the processes, even pathological, involving this brain part. In this work, we present a method for a fast analysis of dopamine levels in samples of cerebrospinal fluid and mouse striatum. The method is based on a nanocomposite composed of magnetite and silver nanoparticles, whose surface is modified with iron nitriloacetic acid (Fe-NTA)-a dopamine-selective compound. The magnetic properties of this nanocomposite enable simple separation of targeted molecules from a complex matrix while the silver acts as a platform for surface-enhanced Raman scattering (SERS). Silver and magnetite nanoparticles are joined by carboxymethyl chitosan, useful in biological environments and enhancing the sensitivity due to the presence of carboxyl groups. This system reveals a good stability and reproducibility. Moreover, rapid and simple quantitative experiments show an improvement in the detection of dopamine levels in biological assays at low femtomolar concentrations. The comparative data performed with clinical samples of mouse striatum show that the developed magnetic SERS is a strong alternative to conventional high-performance liquid chromatography-mass spectrometry (HPLC-MS) with even several superior aspects including faster and cheaper analysis and no necessity of sample preconcentration or derivatization.


Subject(s)
Corpus Striatum/metabolism , Dopamine/cerebrospinal fluid , Magnetics , Nanocomposites , Spectrum Analysis, Raman/methods , Animals , Dopamine/metabolism , Ferric Compounds/chemistry , Mice , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties
10.
Environ Sci Technol ; 47(10): 5285-93, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23590411

ABSTRACT

We report on new magnetic bimetallic Fe-Ag nanoparticles (NPs) which exhibit significant antibacterial and antifungal activities against a variety of microorganisms including disease causing pathogens, as well as prolonged action and high efficiency of phosphorus removal. The preparation of these multifunctional hybrids, based on direct reduction of silver ions by commercially available zerovalent iron nanoparticles (nZVI) is fast, simple, feasible in a large scale with a controllable silver NP content and size. The microscopic observations (transmission electron microscopy, scanning electron microscopy/electron diffraction spectroscopy) and phase analyses (X-ray diffraction, Mössbauer spectroscopy) reveal the formation of Fe3O4/γ-FeOOH double shell on a "redox" active nZVI surface. This shell is probably responsible for high stability of magnetic bimetallic Fe-Ag NPs during storage in air. Silver NPs, ranging between 10 and 30 nm depending on the initial concentration of AgNO3, are firmly bound to Fe NPs, which prevents their release even during a long-term sonication. Taking into account the possibility of easy magnetic separation of the novel bimetallic Fe-Ag NPs, they represent a highly promising material for advanced antimicrobial and reductive water treatment technologies.


Subject(s)
Anti-Infective Agents/chemistry , Iron/chemistry , Magnetics , Metal Nanoparticles , Phosphorus/isolation & purification , Silver/chemistry , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...