Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Genome Med ; 16(1): 54, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589970

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS: We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS: We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS: Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Smoking/adverse effects , Smoking/genetics , Lung/metabolism , Nicotiana , Nasal Mucosa/metabolism , Transcriptome
2.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38564418

ABSTRACT

The estrogen receptor-α (ER) drives 75% of breast cancers. On activation, the ER recruits and assembles a 1-2 MDa transcriptionally active complex. These complexes can modulate tumour growth, and understanding the roles of individual proteins within these complexes can help identify new therapeutic targets. Here, we present the discovery of ER and ZMIZ1 within the same multi-protein assembly by quantitative proteomics, and validated by proximity ligation assay. We characterise ZMIZ1 function by demonstrating a significant decrease in the proliferation of ER-positive cancer cell lines. To establish a role for the ER-ZMIZ1 interaction, we measured the transcriptional changes in the estrogen response post-ZMIZ1 knockdown using an RNA-seq time-course over 24 h. Gene set enrichment analysis of the ZMIZ1-knockdown data identified a specific delay in the response of estradiol-induced cell cycle genes. Integration of ENCODE data with our RNA-seq results identified that ER and ZMIZ1 both bind the promoter of E2F2. We therefore propose that ER and ZMIZ1 interact to enable the efficient estrogenic response at subset of cell cycle genes via a novel ZMIZ1-ER-E2F2 signalling axis. Finally, we show that high ZMIZ1 expression is predictive of worse patient outcome, ER and ZMIZ1 are co-expressed in breast cancer patients in TCGA and METABRIC, and the proteins are co-localised within the nuclei of tumour cell in patient biopsies. In conclusion, we establish that ZMIZ1 is a regulator of the estrogenic cell cycle response and provide evidence of the biological importance of the ER-ZMIZ1 interaction in ER-positive patient tumours, supporting potential clinical relevance.


Subject(s)
Breast Neoplasms , E2F2 Transcription Factor , Estrogen Receptor alpha , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Cell Line, Tumor , E2F2 Transcription Factor/metabolism , E2F2 Transcription Factor/genetics , Cell Proliferation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding , Promoter Regions, Genetic/genetics , Signal Transduction , Cell Cycle/genetics , Prognosis
3.
Genome Biol ; 25(1): 62, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438920

ABSTRACT

Cancer cells often exhibit DNA copy number aberrations and can vary widely in their ploidy. Correct estimation of the ploidy of single-cell genomes is paramount for downstream analysis. Based only on single-cell DNA sequencing information, scAbsolute achieves accurate and unbiased measurement of single-cell ploidy and replication status, including whole-genome duplications. We demonstrate scAbsolute's capabilities using experimental cell multiplets, a FUCCI cell cycle expression system, and a benchmark against state-of-the-art methods. scAbsolute provides a robust foundation for single-cell DNA sequencing analysis across different technologies and has the potential to enable improvements in a number of downstream analyses.


Subject(s)
Benchmarking , Ploidies , Cell Cycle/genetics , Cell Division , Sequence Analysis, DNA
5.
Nat Commun ; 14(1): 6756, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875466

ABSTRACT

High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Neoadjuvant Therapy/methods , Biomarkers, Tumor/genetics
7.
PLoS One ; 18(8): e0289499, 2023.
Article in English | MEDLINE | ID: mdl-37549131

ABSTRACT

The inspection of stained tissue slides by pathologists is essential for the early detection, diagnosis and monitoring of disease. Recently, deep learning methods for the analysis of whole-slide images (WSIs) have shown excellent performance on these tasks, and have the potential to substantially reduce the workload of pathologists. However, WSIs present a number of unique challenges for analysis, requiring special consideration of image annotations, slide and image artefacts, and evaluation of WSI-trained model performance. Here we introduce SliDL, a Python library for performing pre- and post-processing of WSIs. SliDL makes WSI data handling easy, allowing users to perform essential processing tasks in a few simple lines of code, bridging the gap between standard image analysis and WSI analysis. We introduce each of the main functionalities within SliDL: from annotation and tile extraction to tissue detection and model evaluation. We also provide 'code snippets' to guide the user in running SliDL. SliDL has been designed to interact with PyTorch, one of the most widely used deep learning libraries, allowing seamless integration into deep learning workflows. By providing a framework in which deep learning methods for WSI analysis can be developed and applied, SliDL aims to increase the accessibility of an important application of deep learning.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted/methods , Coloring Agents , Image Processing, Computer-Assisted/methods
8.
Nat Commun ; 14(1): 4387, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474499

ABSTRACT

The drivers of recurrence and resistance in ovarian high grade serous carcinoma remain unclear. We investigate the acquisition of resistance by collecting tumour biopsies from a cohort of 276 women with relapsed ovarian high grade serous carcinoma in the BriTROC-1 study. Panel sequencing shows close concordance between diagnosis and relapse, with only four discordant cases. There is also very strong concordance in copy number between diagnosis and relapse, with no significant difference in purity, ploidy or focal somatic copy number alterations, even when stratified by platinum sensitivity or prior chemotherapy lines. Copy number signatures are strongly correlated with immune cell infiltration, whilst diagnosis samples from patients with primary platinum resistance have increased rates of CCNE1 and KRAS amplification and copy number signature 1 exposure. Our data show that the ovarian high grade serous carcinoma genome is remarkably stable between diagnosis and relapse and acquired chemotherapy resistance does not select for common copy number drivers.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Copy Number Variations/genetics , Neoplasm Recurrence, Local/genetics , Mutation , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology
9.
Elife ; 122023 05 11.
Article in English | MEDLINE | ID: mdl-37166279

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that HGSOC PDOs comprise communities of different clonal populations and represent models of different causes of chromosomal instability including homologous recombination deficiency, chromothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic models for studies of specific mutational processes and precision therapeutics.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Mutation , Genomics , Chromosomal Instability , Organoids
12.
Front Oncol ; 12: 868265, 2022.
Article in English | MEDLINE | ID: mdl-35785153

ABSTRACT

Background: Pathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. Methods: Omental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). Results: The performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. Conclusions: CT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application.

13.
EBioMedicine ; 82: 104160, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35843173

ABSTRACT

BACKGROUND: Intestinal metaplasia (IM) is pre-neoplastic with variable cancer risk. Cytosponge-TFF3 test can detect IM. We aimed to 1) assess whether quantitative TFF3 scores can distinguish clinically relevant Barrett's oesophagus (BO) (C≥1 or M≥3) from focal IM pathologies (C<1, M<3 or IM of gastro-oesophageal junction); 2) whether TFF3 counts can be automated to inform clinical practice. METHODS: Patients from the Barett's oEsophagus Screening Trial 2 (BEST2) case-control and BEST3 randomised trials were used. For aim 1, TFF3-positive glands were scored manually and correlated with clinical diagnosis. For aim 2, machine learning approach was used to obtain TFF3 count and logistic regression with cross-validation was trained on the BEST2 dataset (n = 529) and tested in the BEST3 dataset (n = 158). FINDINGS: Patients with clinically relevant BO had higher mean TFF3 gland count compared to focal IM pathologies (mean difference 4.14; 95% confidence interval, CI 2.76-5.52, p < 0.001). The mean class-balanced validation accuracy was 0.84 (95% CI 0.77-0.90), and precision of 0.95 (95% CI 0.87-1.00) for detecting clinically relevant BO. Applying this model on BEST3 showed precision of 0.91 (95% CI 0.85-0.97) for focal IM pathologies with a class-balanced accuracy of 0.77 (95% CI 0.69-0.84). Using this model, 55% of patients (87/158) in BEST3 would fall below the threshold for clinically relevant BO and could avoid gastroscopy, while only missing 5.1% of patients (8/158). INTERPRETATION: Automated Cytosponge-TFF3 gland quantification may enable thresholds to be set to trigger confirmatory gastroscopy to minimize overdiagnosis of focal IM pathologies with very low cancer-associated risk. FUNDING: Cancer Research UK (12088/16893 and C14478/A21047).


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , Barrett Esophagus/diagnosis , Barrett Esophagus/pathology , Esophageal Neoplasms/pathology , Gastroscopy , Humans , Machine Learning , Metaplasia , Trefoil Factor-3
14.
Nature ; 606(7916): 976-983, 2022 06.
Article in English | MEDLINE | ID: mdl-35705807

ABSTRACT

Chromosomal instability (CIN) results in the accumulation of large-scale losses, gains and rearrangements of DNA1. The broad genomic complexity caused by CIN is a hallmark of cancer2; however, there is no systematic framework to measure different types of CIN and their effect on clinical phenotypes pan-cancer. Here we evaluate the extent, diversity and origin of CIN across 7,880 tumours representing 33 cancer types. We present a compendium of 17 copy number signatures that characterize specific types of CIN, with putative aetiologies supported by multiple independent data sources. The signatures predict drug response and identify new drug targets. Our framework refines the understanding of impaired homologous recombination, which is one of the most therapeutically targetable types of CIN. Our results illuminate a fundamental structure underlying genomic complexity in human cancers and provide a resource to guide future CIN research.


Subject(s)
Chromosomal Instability , Neoplasms , Chromosomal Instability/genetics , Homologous Recombination/drug effects , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
15.
Clin Cancer Res ; 28(13): 2911-2922, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35398881

ABSTRACT

PURPOSE: Ovarian high-grade serous carcinoma (HGSC) is usually diagnosed at late stage. We investigated whether late-stage HGSC has unique genomic characteristics consistent with acquisition of evolutionary advantage compared with early-stage tumors. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing and shallow whole-genome sequencing (sWGS) on pretreatment samples from 43 patients with FIGO stage I-IIA HGSC to investigate somatic mutations and copy-number (CN) alterations (SCNA). We compared results to pretreatment samples from 52 patients with stage IIIC/IV HGSC from the BriTROC-1 study. RESULTS: Age of diagnosis did not differ between early-stage and late-stage patients (median 61.3 years vs. 62.3 years, respectively). TP53 mutations were near-universal in both cohorts (89% early-stage, 100% late-stage), and there were no significant differences in the rates of other somatic mutations, including BRCA1 and BRCA2. We also did not observe cohort-specific focal SCNA that could explain biological behavior. However, ploidy was higher in late-stage (median, 3.0) than early-stage (median, 1.9) samples. CN signature exposures were significantly different between cohorts, with greater relative signature 3 exposure in early-stage and greater signature 4 in late-stage. Unsupervised clustering based on CN signatures identified three clusters that were prognostic. CONCLUSIONS: Early-stage and late-stage HGSCs have highly similar patterns of mutation and focal SCNA. However, CN signature analysis showed that late-stage disease has distinct signature exposures consistent with whole-genome duplication. Further analyses will be required to ascertain whether these differences reflect genuine biological differences between early-stage and late-stage or simply time-related markers of evolutionary fitness. See related commentary by Yang et al., p. 2730.


Subject(s)
Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Female , Genomics , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
16.
Mol Oncol ; 16(14): 2693-2709, 2022 07.
Article in English | MEDLINE | ID: mdl-35298091

ABSTRACT

Previously, colorectal cancer (CRC) has been classified into four distinct molecular subtypes based on transcriptome data. These consensus molecular subtypes (CMSs) have implications for our understanding of tumor heterogeneity and the prognosis of patients. So far, this classification has been based on the use of messenger RNAs (mRNAs), although microRNAs (miRNAs) have also been shown to play a role in tumor heterogeneity and biological differences between CMSs. In contrast to mRNAs, miRNAs have a smaller size and increased stability, facilitating their detection. Therefore, we built a miRNA-based CMS classifier by converting the existing mRNA-based CMS classification using machine learning (training dataset of n = 271). The performance of this miRNA-assigned CMS classifier (CMS-miRaCl) was evaluated in several datasets, achieving an overall accuracy of ~ 0.72 (0.6329-0.7987) in the largest dataset (n = 158). To gain insight into the biological relevance of CMS-miRaCl, we evaluated the most important features in the classifier. We found that miRNAs previously reported to be relevant in microsatellite-instable CRCs or Wnt signaling were important features for CMS-miRaCl. Following further studies to validate its robustness, this miRNA-based alternative might simplify the implementation of CMS classification in clinical workflows.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , Humans , MicroRNAs/genetics , Microsatellite Instability , RNA, Messenger/genetics , Transcriptome
17.
EBioMedicine ; 76: 103814, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35051729

ABSTRACT

BACKGROUND: Non-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity. METHODS: The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR. FINDINGS: Seventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regulation processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192-5p and -194-5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is confirmed as a specific BE marker. INTERPRETATION: Computational pathology tools aid accurate cellular attribution of molecular signals. This innovative design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of biomarkers for clinical use. FUNDING: Funded by the NIHR Cambridge Biomedical Research Centre, the Medical Research Council, the Rosetrees and Stoneygate Trusts, and CRUK core grants.


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , MicroRNAs , Artificial Intelligence , Barrett Esophagus/genetics , Biomarkers/metabolism , Cross-Sectional Studies , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Humans , MicroRNAs/genetics
18.
Nature ; 601(7894): 623-629, 2022 01.
Article in English | MEDLINE | ID: mdl-34875674

ABSTRACT

Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment1. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy2. Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers.


Subject(s)
Breast Neoplasms , Ecosystem , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Genomics , Humans , Machine Learning , Neoadjuvant Therapy , Tumor Microenvironment
20.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33831375

ABSTRACT

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Subject(s)
Genetic Heterogeneity , Neoplasms/genetics , DNA Copy Number Variations , DNA, Neoplasm/chemistry , DNA, Neoplasm/metabolism , Databases, Genetic , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/pathology , Polymorphism, Single Nucleotide , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...