Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
AJNR Am J Neuroradiol ; 38(1): 162-169, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27789448

ABSTRACT

BACKGROUND AND PURPOSE: Very preterm infants (birth weight, <1500 g) are at increased risk of cognitive and motor impairment, including cerebral palsy. These adverse neurodevelopmental outcomes are associated with white matter abnormalities on MR imaging at term-equivalent age. Cerebral palsy has been predicted by analysis of spontaneous movements in the infant termed "General Movement Assessment." The goal of this study was to determine the utility of General Movement Assessment in predicting adverse cognitive, language, and motor outcomes in very preterm infants and to identify brain imaging markers associated with both adverse outcomes and aberrant general movements. MATERIALS AND METHODS: In this prospective study of 47 preterm infants of 24-30 weeks' gestation, brain MR imaging was performed at term-equivalent age. Infants underwent T1- and T2-weighted imaging for volumetric analysis and DTI. General movements were assessed at 10-15 weeks' postterm age, and neurodevelopmental outcomes were evaluated at 2 years by using the Bayley Scales of Infant and Toddler Development III. RESULTS: Nine infants had aberrant general movements and were more likely to have adverse neurodevelopmental outcomes, compared with infants with normal movements. In infants with aberrant movements, Tract-Based Spatial Statistics analysis identified significantly lower fractional anisotropy in widespread white matter tracts, including the corpus callosum, inferior longitudinal and fronto-occipital fasciculi, internal capsule, and optic radiation. The subset of infants having both aberrant movements and abnormal neurodevelopmental outcomes in cognitive, language, and motor skills had significantly lower fractional anisotropy in specific brain regions. CONCLUSIONS: Aberrant general movements at 10-15 weeks' postterm are associated with adverse neurodevelopmental outcomes and specific white matter microstructure abnormalities for cognitive, language, and motor delays.


Subject(s)
Infant, Extremely Premature , Movement/physiology , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/etiology , White Matter/diagnostic imaging , Brain/diagnostic imaging , Brain/growth & development , Brain/pathology , Cerebral Palsy/diagnosis , Cerebral Palsy/etiology , Female , Humans , Infant , Infant, Extremely Premature/growth & development , Infant, Newborn , Male , Neurodevelopmental Disorders/pathology , Prospective Studies , White Matter/growth & development , White Matter/pathology
2.
Leukemia ; 30(3): 692-700, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26286117

ABSTRACT

Current immunosuppressive/anti-inflammatory agents target the responding effector arm of the immune response and their nonspecific action increases the risk of infection and malignancy. These effects impact on their use in allogeneic haematopoietic cell transplantation and other forms of transplantation. Interventions that target activated dendritic cells (DCs) have the potential to suppress the induction of undesired immune responses (for example, graft versus host disease (GVHD) or transplant rejection) and to leave protective T-cell immune responses intact (for example, cytomegalovirus (CMV) immunity). We developed a human IgG1 monoclonal antibody (mAb), 3C12, specific for CD83, which is expressed on activated but not resting DC. The 3C12 mAb and an affinity improved version, 3C12C, depleted CD83(+) cells by CD16(+) NK cell-mediated antibody-dependent cellular cytotoxicity, and inhibited allogeneic T-cell proliferation in vitro. A single dose of 3C12C prevented human peripheral blood mononuclear cell-induced acute GVHD in SCID mouse recipients. The mAb 3C12C depleted CMRF-44(+)CD83(bright) activated DC but spared CD83(dim/-) DC in vivo. It reduced human T-cell activation in vivo and maintained the proportion of CD4(+) FoxP3(+) CD25(+) Treg cells and also viral-specific CD8(+) T cells. The anti-CD83 mAb, 3C12C, merits further evaluation as a new immunosuppressive agent in transplantation.


Subject(s)
Antibodies, Monoclonal/pharmacology , Dendritic Cells/drug effects , Graft Rejection/prevention & control , Graft vs Host Disease/prevention & control , Immunosuppressive Agents/pharmacology , Membrane Glycoproteins/antagonists & inhibitors , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Gene Expression , Graft Rejection/immunology , Graft Rejection/mortality , Graft Rejection/pathology , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/transplantation , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, SCID , Survival Analysis , Transplantation, Heterologous , CD83 Antigen
3.
Anal Biochem ; 430(2): 141-50, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22922799

ABSTRACT

Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins, XOMA 3B and XOMA 3E, each consisting of three mAbs that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (H(N)). Epitope mapping data were used to design LC-H(N) domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or XOMA 3E. Mutant LC-H(N) domains were cloned, expressed, and purified from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of enzyme-linked immunosorbent assays (ELISAs) that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein.


Subject(s)
Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay , Antigen-Antibody Reactions , Botulinum Toxins/chemistry , Botulinum Toxins/immunology , Botulinum Toxins/metabolism , Botulinum Toxins, Type A , Epitope Mapping , Epitopes/immunology , Protein Engineering , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
4.
Anal Biochem ; 421(2): 351-61, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22037290

ABSTRACT

Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development, including pharmacokinetic (PK), toxicology, stability, and biochemical characterization studies of such drugs. We have developed an antitoxin, XOMA 3AB, consisting of three recombinant mAbs that potently neutralize the known subtypes of type A botulinum neurotoxin (BoNT/A). The three mAbs bind nonoverlapping BoNT/A epitopes with high affinity. XOMA 3AB is being developed as a treatment for botulism resulting from BoNT/A. To develop antibody-specific assays, we cloned, expressed, and purified BoNT/A domains from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. mAb-specific domains were used to develop an enzyme-linked immunosorbent assay (ELISA) for characterization of the integrity and binding activity of the three mAbs in the drug product. An electrochemiluminescence bridging assay that is robust to interference from components in serum was also developed, and we demonstrate that it can be used for PK assays. This type of antigen engineering to generate mAb-specific domains is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that binds the same protein and is superior to anti-idiotype approaches.


Subject(s)
Antibodies, Monoclonal/analysis , Botulinum Toxins, Type A/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/genetics , Botulinum Toxins, Type A/isolation & purification , Chromatography, Gel , Chromatography, High Pressure Liquid , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Protein Conformation
5.
Protein Eng Des Sel ; 24(3): 321-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21149386

ABSTRACT

Botulism, a disease of humans characterized by prolonged paralysis, is caused by botulinum neurotoxins (BoNTs), the most poisonous substances known. There are seven serotypes of BoNT (A-G) which differ from each other by 34-64% at the amino acid level. Each serotype is uniquely recognized by polyclonal antibodies, which originally were used to classify serotypes. To determine if there existed monoclonal antibodies (mAbs) capable of binding two or more serotypes, we evaluated the ability of 35 yeast-displayed single-chain variable fragment antibodies generated from vaccinated humans or mice for their ability to bind multiple BoNT serotypes. Two such clonally related human mAbs (1B18 and 4E17) were identified that bound BoNT serotype A (BoNT/A) and B or BoNT/A, B, E and F, respectively, with high affinity. Using molecular evolution techniques, it proved possible to both increase affinity and maintain cross-serotype reactivity for the 4E17 mAb. Both 1B18 and 4E17 bound to a relatively conserved epitope at the tip of the BoNT translocation domain. Immunoglobulin G constructed from affinity matured variants of 1B18 and 4E17 were evaluated for their ability to neutralize BoNT/B and E, respectively, in vivo. Both antibodies potently neutralized BoNT in vivo demonstrating that this epitope is functionally important in the intoxication pathway. Such cross-serotype binding and neutralizing mAbs should simplify the development of antibody-based BoNT diagnostics and therapeutics.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Specificity , Botulinum Toxins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/chemistry , Antibody Affinity , Botulinum Toxins/chemistry , CHO Cells , Conserved Sequence , Cricetinae , Cricetulus , Cross Reactions , Directed Molecular Evolution , Epitope Mapping , Epitopes/immunology , Female , Humans , Immunoglobulin G/immunology , Mice , Molecular Sequence Data , Protein Structure, Tertiary , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
6.
Protein Eng Des Sel ; 23(4): 311-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20156888

ABSTRACT

Botulism is caused by the botulinum neurotoxins (BoNTs), the most poisonous substance known. Because of the high potency of BoNT, development of diagnostic and therapeutic antibodies for botulism requires antibodies of very high affinity. Here we report the use of yeast mating to affinity mature BoNT antibodies by light chain shuffling. A library of immunoglobulin light chains was generated in a yeast vector where the light chain is secreted. The heavy chain variable region and the first domain of the constant region (V(H)-C(H)1) from a monoclonal antibody was cloned into a different yeast vector for surface display as a fusion to the Aga2 protein. Through yeast mating of the two haploid yeasts, a library of light chain-shuffled Fab was created. Using this approach, the affinities of one BoNT/A and two BoNT/B scFv antibody fragments were increased from 9- to more than 77-fold. Subcloning the V-genes from the affinity-matured Fab yielded fully human IgG1 with equilibrium binding constants for BoNT/A and BoNT/B of 2.51 x 10(-11) M or lower for all three monoclonal antibodies. This technique provides a rapid route to antibody affinity maturation.


Subject(s)
Antibodies, Monoclonal/genetics , Botulinum Toxins/immunology , DNA Shuffling , Saccharomyces cerevisiae/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Affinity , Epitopes/chemistry , Epitopes/immunology , Humans , Saccharomyces cerevisiae/metabolism
7.
Br J Cancer ; 99(9): 1415-25, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-18841159

ABSTRACT

Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2'+'/ErbB3'+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2'+'/ErbB3'+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antigens, Neoplasm/immunology , Immunoglobulin Fc Fragments/therapeutic use , Neoplasms/therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Animals , Cell Line, Tumor , Dimerization , Humans , Male , Mice , Mice, Inbred ICR , Receptor, ErbB-2/analysis , Receptor, ErbB-3/analysis
8.
J Mol Biol ; 365(1): 196-210, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17059824

ABSTRACT

Botulinum neurotoxin (BoNT), the most poisonous substance known, causes naturally occurring human disease (botulism) and is one of the top six biothreat agents. Botulism is treated with polyclonal antibodies produced in horses that are associated with a high incidence of systemic reactions. Human monoclonal antibodies (mAbs) are under development as a safer therapy. Identifying neutralizing epitopes on BoNTs is an important step in generating neutralizing mAbs, and has implications for vaccine development. Here, we show that the three domains of BoNT serotype A (BoNT/A) can be displayed on the surface of yeast and used to epitope map six mAbs to the toxin domains they bind. The use of yeast obviates the need to express and purify each domain, and it should prove possible to display domains of other BoNT subtypes and serotypes for epitope mapping. Using a library of yeast-displayed BoNT/A binding domain (H(C)) mutants and selecting for loss of binding, the fine epitopes of three neutralizing BoNT/A mAbs were identified. Two mAbs bind the C-terminal subdomain of H(C), with one binding near the toxin sialoganglioside binding site. The most potently neutralizing mAb binds the N-terminal subdomain of H(C), in an area not previously thought to be functionally important. Modeling the epitopes shows how all three mAbs could bind BoNT/A simultaneously and may explain, in part, the dramatic synergy observed on in vivo toxin neutralization when these antibodies are combined. The results demonstrate how yeast display can be used for domain-level and fine mapping of conformational BoNT antibody epitopes and the mapping results identify three neutralizing BoNT/A epitopes.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Botulinum Toxins, Type A/immunology , Clostridium botulinum/immunology , Epitope Mapping , Peptide Library , Antibody Specificity , Antigen-Antibody Complex , Botulinum Toxins, Type A/chemistry , Humans , Models, Molecular , Mutagenesis , Neutralization Tests , Protein Structure, Tertiary , Saccharomyces cerevisiae
9.
J Bacteriol ; 189(3): 818-32, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17114256

ABSTRACT

Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore-forming rod-shaped bacteria that have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and death in humans and other animal species. A collection of 174 C. botulinum strains was examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine the genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT/A to BoNT/G). Analysis of the16S rRNA gene sequences confirmed previous identifications of at least four distinct genomic backgrounds (groups I to IV), each of which has independently acquired one or more BoNT genes through horizontal gene transfer. AFLP analysis provided higher resolution and could be used to further subdivide the four groups into subgroups. Sequencing of the BoNT genes from multiple strains of serotypes A, B, and E confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven toxin genes of the serotypes were compared and showed various degrees of interrelatedness and recombination, as was previously noted for the nontoxic nonhemagglutinin gene, which is linked to the BoNT gene. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for the treatment of botulism.


Subject(s)
Botulinum Toxins/biosynthesis , Clostridium botulinum/genetics , Genetic Variation , Clostridium botulinum/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Serotyping
10.
Mol Pharm ; 3(6): 726-36, 2006.
Article in English | MEDLINE | ID: mdl-17140260

ABSTRACT

Genospheres are cationic lipid-nucleic acid nanoparticles prepared by the assembly of the lipids and nucleic acids from an aqueous/organic liquid monophase that independently dissolves the components, where the resultant particles are homogeneously sized (70-110 nm), with efficiently incorporated and protected DNA. In the present study, we demonstrate pH-dependent modulation of the Genosphere surface charge using pH-titratable lipids. By incorporation of the lipids with titratable anionic or imidazole headgroups, Genospheres with neutral or anionic surface charge at neutral pH were produced and compared for cellular uptake and transfection of a reporter gene (luciferase) in culture of breast cancer cells. The extent of particle-cell association was also studied by fluorescent microscopy and quantified by cytofluorometery. The effects of Genosphere surface modification with poly(ethylene glycol) (molecular weight 2000) at low (0.5 mol %) and high (5 mol %) grafting densities, as well as the effects of HER2-receptor-directed targeting by an internalizable anti-HER2 scFv F5, linked via PEG spacer, were also studied. Inclusion in the Genosphere formulation of pH-titratable lipids CHEMS (cholesteryl hemisuccinate), CHIM (1-(3-(cholesteryloxycarbonylamino)propyl)imidazole), or DSGG (1,2-distearoyl-sn-glycero-3-hemiglutarate) rendered the particles surface-charge neutral or slightly anionic at neutral pH, and cationic at mildly acidic pH, as shown by zeta-potential measurements. In HER2-targeted systems, transfection activity and target specificity with HER2-overexpressing SKBR-3 breast cancer cells were dependent on Genosphere surface charge and PEGylation. The highest target specificity correlated with low cationic charge at neutral pH, while incorporation of 5 mol % PEG-lipid had only minor effects on Genosphere-cell association, internalization, and transfection activity. The implications of this work for potential in vivo applications are discussed.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Receptor, ErbB-2/immunology , Antibodies/chemistry , Biomedical Engineering , Humans , Models, Biological , Sensitivity and Specificity , Surface Properties , Transfection , Tumor Cells, Cultured
11.
Biochim Biophys Acta ; 1758(4): 429-42, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16678786

ABSTRACT

Effective, reproducible, and scalable methods for DNA-lipid assembly are important for the success of non-viral vectors in in vivo gene therapy. We hypothesized DNA-lipid assembly would be optimal if started from a liquid monophase where both DNA and lipids separately form molecular or micellar solutions prior to mixing, without preexisting condensed lipid phases, thus allowing DNA-lipid assembly under conditions close to equilibrium. Previously, we found that mixing plasmid DNA, 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC), cholesterol and a cationic lipid, 1, 2-dioleoyl-3-(trimethylammonio) propane (DOTAP) in 50% (v/v) aqueous ethanol spontaneously produced an optically transparent solution. Upon ethanol removal, DNA-lipid nanoparticles (Genospheres) were formed. For comparison with well-known technologies, different DNA-lipid particles were prepared by interaction of plasmid DNA and stable or ethanol-destabilized lipid vesicles by combining the components in water or 30% (v/v) aqueous ethanol, respectively. Among the three studied DNA-lipid assembly methods, only Genospheres combined the properties of small size (less than or around 100 nm), high incorporation of both lipid and DNA, high degree of DNA protection (dye accessibility 5-12%), a narrow distribution of particle density and when immuno-targeted, the highest transfection efficiency in HER2-overexpressing cells in vitro. We conclude that the Genosphere assembly methodology offers advantages for the development of effective, scalable and targetable non-viral gene delivery vectors.


Subject(s)
Lipids/analysis , Nanostructures/analysis , Phosphatidylcholines/analysis , Base Sequence , DNA/analysis , Indicators and Reagents , Oligodeoxyribonucleotides/chemistry , Organic Chemicals , Phosphatidylcholines/genetics , Plasmids , Receptor, ErbB-2/genetics , Solvents , Water
12.
Gene Ther ; 13(7): 646-51, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16341056

ABSTRACT

We describe the assembly of a cationic lipid-nucleic acid nanoparticle from a liquid monophase containing water and a water miscible organic solvent where both lipid and DNA components are separately soluble prior to their combination. Upon removal of the organic solvent, stable and homogenously sized (70-100 nm) lipid-nucleic acid nanoparticles (Genospheres) were formed. The low accessibility (<15%) of the nanoparticle-encapsulated DNA to a DNA intercalating dye indicated well-protected nucleic acids and high DNA incorporation efficiencies. It was demonstrated that Genospheres could be stably stored under a variety of conditions including a lyophilized state where no appreciable increase in particle size or DNA accessibility was observed following reconstitution. Finally, Genospheres were made target-specific by insertion of an antibody-lipopolymer (anti-HER2 scFv (F5)-PEG-DSPE) conjugate into the particle. The target specificity (>100-fold) in HER2 overexpressing SK-BR-3 breast cancer cells was dependent on the degree of PEGylation, where the incorporation of high amounts of PEG-lipid on the particle surface (up to 5 mol%) had only a minor effect on the transfection activity of the targeted Genospheres. In summary, this work describes a novel, readily scalable method for preparing highly stable immunotargeted nucleic acid delivery vehicles capable of achieving a high degree of specific transfection activity.


Subject(s)
DNA/administration & dosage , Genetic Therapy/methods , Immunoglobulin Variable Region/genetics , Nanotechnology/methods , Receptor, ErbB-2/immunology , Drug Carriers , Gene Targeting , Genetic Therapy/instrumentation , Humans , Liposomes , Microscopy, Electron , Nanostructures , Phosphatidylethanolamines , Polyethylene Glycols
13.
Infect Immun ; 73(9): 5450-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16113261

ABSTRACT

The botulinum neurotoxins (BoNTs) are category A biothreat agents which have been the focus of intensive efforts to develop vaccines and antibody-based prophylaxis and treatment. Such approaches must take into account the extensive BoNT sequence variability; the seven BoNT serotypes differ by up to 70% at the amino acid level. Here, we have analyzed 49 complete published sequences of BoNTs and show that all toxins also exhibit variability within serotypes ranging between 2.6 and 31.6%. To determine the impact of such sequence differences on immune recognition, we studied the binding and neutralization capacity of six BoNT serotype A (BoNT/A) monoclonal antibodies (MAbs) to BoNT/A1 and BoNT/A2, which differ by 10% at the amino acid level. While all six MAbs bound BoNT/A1 with high affinity, three of the six MAbs showed a marked reduction in binding affinity of 500- to more than 1,000-fold to BoNT/A2 toxin. Binding results predicted in vivo toxin neutralization; MAbs or MAb combinations that potently neutralized A1 toxin but did not bind A2 toxin had minimal neutralizing capacity for A2 toxin. This was most striking for a combination of three binding domain MAbs which together neutralized >40,000 mouse 50% lethal doses (LD(50)s) of A1 toxin but less than 500 LD(50)s of A2 toxin. Combining three MAbs which bound both A1 and A2 toxins potently neutralized both toxins. We conclude that sequence variability exists within all toxin serotypes, and this impacts monoclonal antibody binding and neutralization. Such subtype sequence variability must be accounted for when generating and evaluating diagnostic and therapeutic antibodies.


Subject(s)
Antibodies, Bacterial/metabolism , Binding Sites, Antibody , Botulinum Toxins, Type A/genetics , Clostridium botulinum/classification , Animals , Antibodies, Monoclonal/metabolism , Base Sequence , Botulinum Toxins, Type A/antagonists & inhibitors , Botulinum Toxins, Type A/immunology , Clostridium botulinum/immunology , Genetic Variation , Mice , Protein Structure, Tertiary , Sequence Analysis, DNA , Serotyping
14.
J Mol Biol ; 351(1): 158-69, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16002090

ABSTRACT

Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. Potential use of BoNT as a biothreat agent has made development of sensitive assays for toxin detection and potent antitoxin for treatment of intoxication a high priority. To improve detection and treatment of botulism, molecular evolution and yeast display were used to increase the affinity of two neutralizing single chain Fv (scFv) antibodies binding BoNT serotype A (BoNT/A). Selection of yeast displayed scFv libraries was performed using methods to select for both increased association rate constant (k(on)) and decreased dissociation rate constants (k(off)). A single cycle of error prone mutagenesis increased the affinity of the 3D12 scFv 45-fold from a K(D) of 9.43x10(-10)M to a K(D) of 2.1x10(-11)M. Affinity of the HuC25 scFv was increased 37-fold from 8.44x10(-10)M to 2.26x10(-11)M using libraries constructed by both random and site directed mutagenesis. scFv variable region genes were used to construct IgG for use in detection assays and in vivo neutralization studies. While IgG had the same relative increases in affinity as scFv, (35-fold and 81-fold, respectively, for 3D12 and HuC25) higher solution equilibrium binding constants were observed for the IgG, with the 3D12 K(D) increasing from 6.07x10(-11)M to 1.71x10(-12)M and the HuC25 K(D) increasing from 4.51x10(-11)M to 5.54x10(-13)M. Affinity increased due to both an increase in k(on), as well as slowing of k(off). Higher affinity antibodies had increased sensitivity, allowing detection of BoNT/A at concentrations as low as 1x10(-13)M. The antibodies will also allow testing of the role of affinity in in vivo toxin neutralization and could lead to the generation of more potent antitoxin.


Subject(s)
Antibody Affinity/genetics , Botulinum Toxins, Type A/analysis , Directed Molecular Evolution/methods , Genes, Immunoglobulin , Immunoassay/methods , Immunoassay/standards , Immunoglobulin G/genetics , Immunoglobulin Variable Region/genetics , Neutralization Tests/methods , Neutralization Tests/standards , Peptide Library
15.
Neurobiol Dis ; 17(1): 114-21, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15350972

ABSTRACT

A library of phage-displayed human single-chain Fv (scFv) antibodies was selected against the human amyloid-beta peptide (Abeta42). Two new anti-Abeta42 phage-displayed scFvs antibodies were obtained, and the sequences of their V(H) and Vkappa genes were analyzed. A synthetic peptide based on the sequence of Ig heavy chain (V(H)) complementarity-determining region (HCDR3) of the clone with the highest recognition signal was generated and determined to bind to Abeta42 in ELISA. Furthermore, we showed for the first time that an HCDR3-based peptide had neuroprotective potential against Abeta42 neurotoxicity in rat cultured hippocampal neurons. Our results suggest that not only scFvs recognizing Abeta42 but also synthetic peptides based on the V(H) CDR3 sequences of these antibodies may be novel potential candidates for small molecule-based Alzheimer's disease (AD) therapy.


Subject(s)
Amyloid beta-Peptides/pharmacology , Complementarity Determining Regions/metabolism , Immunoglobulin Variable Region/metabolism , Peptide Fragments/pharmacology , Animals , Antibodies/analysis , Antibodies/metabolism , Cells, Cultured , Complementarity Determining Regions/analysis , Humans , Immunoglobulin Variable Region/analysis , Protein Binding/physiology , Rats , Rats, Wistar
16.
Proc Natl Acad Sci U S A ; 99(17): 11346-50, 2002 Aug 20.
Article in English | MEDLINE | ID: mdl-12177434

ABSTRACT

The botulinum neurotoxins (BoNTs) cause the paralytic human disease botulism and are one of the highest-risk threat agents for bioterrorism. To generate a pharmaceutical to prevent or treat botulism, monoclonal antibodies (mAbs) were generated by phage display and evaluated for neutralization of BoNT serotype A (BoNT/A) in vivo. Although no single mAb significantly neutralized toxin, a combination of three mAbs (oligoclonal Ab) neutralized 450,000 50% lethal doses of BoNT/A, a potency 90 times greater than human hyperimmune globulin. The potency of oligoclonal Ab was primarily due to a large increase in functional Ab binding affinity. The results indicate that the potency of the polyclonal humoral immune response can be deconvoluted to a few mAbs binding nonoverlapping epitopes, providing a route to drugs for preventing and treating botulism and diseases caused by other pathogens and biologic threat agents.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Botulinum Toxins/immunology , Immunoglobulin G/immunology , Animals , Antibody Specificity , Base Sequence , DNA Primers , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Kinetics , Male , Mice , Neutralization Tests , Phrenic Nerve/immunology , Polymerase Chain Reaction , Recombinant Proteins/immunology , Time Factors
17.
Infect Immun ; 69(10): 6511-4, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11553596

ABSTRACT

Single-chain antibodies neutralize activity and bind nonoverlapping epitopes of botulinum A neurotoxin. Two phage display epitope libraries were constructed from the 1.3 kb of binding domain cDNA. The minimal epitopes selected against the single-chain Fv-Fc antibodies correspond to conformational epitopes with amino acid residues 1115 to 1223 (S25), 1131 to 1264 (3D12), and 889 to 1294 (C25).


Subject(s)
Antibodies, Bacterial/immunology , Botulinum Toxins, Type A/immunology , Clostridium botulinum/immunology , Epitopes, B-Lymphocyte/immunology , Immunoglobulin Fragments/immunology , Immunoglobulin Variable Region/immunology , Animals , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/genetics , Epitope Mapping/methods , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Humans , Mice , Models, Molecular , Neutralization Tests , Peptide Library , Protein Structure, Tertiary
18.
Cancer Gene Ther ; 8(8): 555-65, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11571533

ABSTRACT

Targeted gene transfer by nonviral vectors can be achieved through incorporation of specific ligand(s) into the vectors. In this study, the effects of incorporation of an anti-ErbB2 single-chain antibody fragment (ScFv) into nonviral vectors for targeted gene delivery were investigated. The ML39 ScFv, selected from a human ScFv phage display library and affinity matured in vitro (K(d)=1 x 10(-9) M), was used as ligand specific for the extracellular domain of the tumor surface protein, ErbB2. Two approaches were taken: (a) development of a vector that is composed of a bifunctional fusion protein capable of binding DNA with the ErbB2-specific ML39 ScFv at its N-terminus and a truncated form of human protamine at its C-terminus, and (b) formulation and evaluation of delivery vectors consisting of three independent components including ML39 ScFv, protamine, and cationic lipids. We demonstrate that fusion proteins comprised of the ML39 ScFv and a truncated form of protamine, denoted as ScFv-P-S, can selectively deliver exogenous DNA into ErbB2(+) cells, with an 8- to 10-fold increase in expression levels of the luciferase reporter gene in ErbB2(+) cells as compared to ErbB2(-) cells. In addition, vectors formulated by appropriately mixing DNA, ScFv, protamine, and lipids in vitro could even more efficiently deliver the reporter gene into ErbB2(+) cells with approximately 5-fold increase in gene expression in ErbB2(+) cell as compared to ErbB2(-) cells. Expression and refolding of the ScFv fusion proteins, in addition to determination of optimal conditions for vector development using these approaches, are discussed.


Subject(s)
Breast Neoplasms/therapy , Genes, erbB-2/immunology , Genetic Therapy , Immunoglobulin Fragments/genetics , Recombinant Fusion Proteins/therapeutic use , Transfection/methods , Amino Acid Sequence , Artificial Gene Fusion , Binding Sites , Breast Neoplasms/immunology , Female , Flow Cytometry , Gene Expression , Genes, erbB-2/genetics , Genetic Vectors , Humans , Liposomes , Molecular Sequence Data , Peptide Library , Protamines , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Sequence Homology, Amino Acid , Transgenes , Tumor Cells, Cultured
19.
J Control Release ; 74(1-3): 95-113, 2001 Jul 06.
Article in English | MEDLINE | ID: mdl-11489487

ABSTRACT

We have generated anti-HER2 (ErbB2) immunoliposomes (ILs), consisting of long circulating liposomes linked to anti-HER2 monoclonal antibody (MAb) fragments, to provide targeted drug delivery to HER2-overexpressing cells. Immunoliposomes were constructed using a modular strategy in which components were optimized for internalization and intracellular drug delivery. Parameters included choice of antibody construct, antibody density, antibody conjugation procedure, and choice of liposome construct. Anti-HER2 immunoliposomes bound efficiently to and internalized in HER2-overexpressing cells in vitro as determined by fluorescence microscopy, electron microscopy, and quantitative analysis of fluorescent probe delivery. Delivery via ILs in HER2-overexpressing cells yielded drug uptake that was up to 700-fold greater than with non-targeted sterically stabilized liposomes. In vivo, anti-HER2 ILs showed extremely long circulation as stable constructs in normal adult rats after a single i.v. dose, with pharmacokinetics that were indistinguishable from sterically stabilized liposomes. Repeat administrations revealed no increase in clearance, further confirming that ILs retain the long circulation and non-immunogenicity of sterically stabilized liposomes. In five different HER2-overexpressing xenograft models, anti-HER2 ILs loaded with doxorubicin (dox) showed potent anticancer activity, including tumor inhibition, regressions, and cures (pathologic complete responses). ILs were significantly superior vs. all other treatment conditions tested: free dox, liposomal dox, free MAb (trastuzumab), and combinations of dox+MAb or liposomal dox+MAb. For example, ILs produced significantly superior antitumor effects vs. non-targeted liposomes (P values from <0.0001 to 0.04 in eight separate experiments). In a non-HER2-overexpressing xenograft model (MCF7), ILs and non-targeted liposomal dox produced equivalent antitumor effects. Detailed studies of tumor localization indicated a novel mechanism of drug delivery for anti-HER2 ILs. Immunotargeting did not increase tumor tissue levels of ILs vs. liposomes, as both achieved very high tumor localization (7.0-8.5% of injected dose/g tissue) in xenograft tumors. However, histologic studies using colloidal-gold labeled ILs demonstrated efficient intracellular delivery in tumor cells, while non-targeted liposomes accumulated within stroma, either extracellularly or within macrophages. In the MCF7 xenograft model lacking HER2-overexpression, no difference in tumor cell uptake was seen, with both ILs and non-targeted liposomes accumulating within stroma. Thus, anti-HER2 ILs, but not non-targeted liposomes, achieve intracellular drug delivery via receptor-mediated endocytosis, and this mechanism is associated with superior antitumor activity. Based on these results, anti-HER2 immunoliposomes have been developed toward clinical trials. Reengineering of construct design for clinical use has been achieved, including: new anti-HER2 scFv F5 generated by screening of a phage antibody library for internalizing anti-HER2 phage antibodies; modifications of the scFv expression construct to support large scale production and clinical use; and development of methods for large-scale conjugation of antibody fragments with liposomes. We developed a scalable two-step protocol for linkage of scFv to preformed and drug-loaded liposomes. Our final, optimized anti-HER2 ILs-dox construct consists of F5 conjugated to derivatized PEG-PE linker and incorporated into commercially available liposomal doxorubicin (Doxil). Finally, further studies of the mechanism of action of anti-HER2 ILs-dox suggest that this strategy may provide optimal delivery of anthracycline-based chemotherapy to HER2-overexpressing cancer cells in the clinic, while circumventing the cardiotoxicity associated with trastuzumab+anthracycline. We conclude that anti-HER2 immunoliposomes represent a promising technology for tumor-targeted drug delivery, and that this strategy may also be applicable to other receptor targets and/or using other delivered agents.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neoplasm/immunology , Genes, erbB-2/immunology , Neoplasms/immunology , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Antibodies, Neoplasm/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Drug Stability , Genetic Therapy/methods , Humans , Immunoglobulin Fragments/immunology , Liposomes , Rats
20.
J Biol Chem ; 276(37): 34402-7, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11447224

ABSTRACT

Increased oxidative stresses are implicated in the pathogenesis of Parkinson's disease, and dopaminergic neurons may be intrinsically susceptible to oxidative damage. However, the selective presence of tetrahydrobiopterin (BH(4)) makes dopaminergic neurons more resistant to oxidative stress caused by glutathione depletion. To further investigate the mechanisms of BH(4) protection, we examined the effects of BH(4) on superoxide levels in individual living mesencephalic neurons. Dopaminergic neurons have intrinsically lower levels of superoxide than nondopaminergic neurons. In addition, inhibiting BH(4) synthesis increased superoxide in dopaminergic neurons, while BH(4) supplementation decreased superoxide in nondopaminergic cells. BH(4) is also a cofactor in catecholamine and NO production. In order to exclude the possibility that the antioxidant effects of BH(4) are mediated by dopamine and NO, we used fibroblasts in which neither catecholamine nor NO production occurs. In fibroblasts, BH(4) decreased baseline reactive oxygen species, and attenuated reactive oxygen species increase by rotenone and antimycin A. Physiologic concentrations of BH(4) directly scavenged superoxide generated by potassium superoxide in vitro. We hypothesize that BH(4) protects dopaminergic neurons from ordinary oxidative stresses generated by dopamine and its metabolites and that environmental insults or genetic defects may disrupt this intrinsic capacity of dopaminergic neurons and contribute to their degeneration in Parkinson's disease.


Subject(s)
Biopterins/analogs & derivatives , Biopterins/pharmacology , Dopamine/metabolism , Free Radical Scavengers/pharmacology , Mesencephalon/metabolism , Parkinson Disease/etiology , Superoxides/metabolism , Animals , Female , Fibroblasts/metabolism , Mitochondria/metabolism , Nitric Oxide/physiology , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL