Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(23): 8787-8801, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29678881

ABSTRACT

C-C motif chemokine receptor 5 (CCR5) is a cell surface-associated, immune-regulatory G protein-coupled receptor (GCPR) with seven transmembrane helices. We previously reported the isolation and initial characterization of short artificial transmembrane protein aptamers, named "traptamers," that specifically down-regulate CCR5 expression and inhibit infection of human T cells by HIV strains that use CCR5 as a co-receptor. Here, we investigated the mechanism of traptamer-mediated CCR5 down-regulation and show that most of the traptamers (designated class 1 traptamers) form a stable complex with CCR5 and target it for lysosome-mediated degradation. The ability of these traptamers to down-regulate CCR5 depended on Lys197 in the fifth transmembrane helix of CCR5. In the absence of traptamers, substitution of Lys197 to an uncharged amino acid increased CCR5 stability, and introduction of a lysine at the homologous position in CCR2b, a related chemokine receptor, decreased CCR2b levels. The prototypic class 2 traptamer BY6M4 also formed a complex with CCR5, but CCR5 down-regulation caused by class 2 traptamers did not depend on the lysosome or on Lys197 These results demonstrate that traptamers use diverse mechanisms to down-regulate CCR5 and identify a specific amino acid that plays a central role in controlling chemokine receptor stability. Further studies of these traptamers are likely to provide new insights into CCR5 metabolism and biology and may suggest new therapeutic approaches to modulate the levels of CCR5 and other GPCRs.


Subject(s)
Aptamers, Peptide/pharmacology , Lysosomes/drug effects , Proteolysis/drug effects , Receptors, CCR5/metabolism , Animals , Cell Line , HIV/drug effects , HIV Infections/drug therapy , HIV Infections/metabolism , Humans , Lysine/analysis , Lysine/metabolism , Lysosomes/metabolism , Mice , Receptors, CCR5/chemistry
2.
Proc Natl Acad Sci U S A ; 114(8): E1519-E1527, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167784

ABSTRACT

Bacterial pathogens coordinate virulence using two-component regulatory systems (TCS). The Bordetella virulence gene (BvgAS) phosphorelay-type TCS controls expression of all known protein virulence factor-encoding genes and is considered the "master virulence regulator" in Bordetella pertussis, the causal agent of pertussis, and related organisms, including the broad host range pathogen Bordetella bronchiseptica We recently discovered an additional sensor kinase, PlrS [for persistence in the lower respiratory tract (LRT) sensor], which is required for B. bronchiseptica persistence in the LRT. Here, we show that PlrS is required for BvgAS to become and remain fully active in mouse lungs but not the nasal cavity, demonstrating that PlrS coordinates virulence specifically in the LRT. PlrS is required for LRT persistence even when BvgAS is rendered constitutively active, suggesting the presence of BvgAS-independent, PlrS-dependent virulence factors that are critical for bacterial survival in the LRT. We show that PlrS is also required for persistence of the human pathogen B. pertussis in the murine LRT and we provide evidence that PlrS most likely functions via the putative cognate response regulator PlrR. These data support a model in which PlrS senses conditions present in the LRT and activates PlrR, which controls expression of genes required for the maintenance of BvgAS activity and for essential BvgAS-independent functions. In addition to providing a major advance in our understanding of virulence regulation in Bordetella, which has served as a paradigm for several decades, these results indicate the existence of previously unknown virulence factors that may serve as new vaccine components and therapeutic or diagnostic targets.


Subject(s)
Bacterial Proteins/genetics , Bordetella bronchiseptica/genetics , Bordetella pertussis/pathogenicity , Gene Expression Regulation, Bacterial , Respiratory System/microbiology , Virulence Factors/genetics , Animals , Bacterial Proteins/metabolism , Bordetella pertussis/genetics , Cell Line , Female , Mice , Mice, Inbred BALB C , Rats , Virulence , Virulence Factors/metabolism
3.
Proc Natl Acad Sci U S A ; 113(29): 8296-301, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27335458

ABSTRACT

In prokaryotes and eukaryotes, cell-cell communication and recognition of self are critical to coordinate multicellular functions. Although kin and kind discrimination are increasingly appreciated to shape naturally occurring microbe populations, the underlying mechanisms that govern these interbacterial interactions are insufficiently understood. Here, we identify a mechanism of interbacterial signal transduction that is mediated by contact-dependent growth inhibition (CDI) system proteins. CDI systems have been characterized by their ability to deliver a polymorphic protein toxin into the cytoplasm of a neighboring bacterium, resulting in growth inhibition or death unless the recipient bacterium produces a corresponding immunity protein. Using the model organism Burkholderia thailandensis, we show that delivery of a catalytically active CDI system toxin to immune (self) bacteria results in gene expression and phenotypic changes within the recipient cells. Termed contact-dependent signaling (CDS), this response promotes biofilm formation and other community-associated behaviors. Engineered strains that are isogenic with B. thailandensis, except the DNA region encoding the toxin and immunity proteins, did not display CDS, whereas a strain of Burkholderia dolosa producing a nearly identical toxin-immunity pair induced signaling in B. thailandensis Our data indicate that bcpAIOB loci confer dual benefits; they direct antagonism toward non-self bacteria and promote cooperation between self bacteria, with self being defined by the bcpAIOB allele and not by genealogic relatedness.


Subject(s)
Burkholderia/physiology , Membrane Proteins/physiology , Bacterial Physiological Phenomena , Bacterial Toxins , Biofilms , Burkholderia/growth & development , Microbial Interactions/physiology , Signal Transduction
4.
BMC Biol ; 12: 70, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25159688

ABSTRACT

BACKGROUND: Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains were first identified from mammalian proteins that bind lipid/sterol ligands via a hydrophobic pocket. In plants, predicted START domains are predominantly found in homeodomain leucine zipper (HD-Zip) transcription factors that are master regulators of cell-type differentiation in development. Here we utilized studies of Arabidopsis in parallel with heterologous expression of START domains in yeast to investigate the hypothesis that START domains are versatile ligand-binding motifs that can modulate transcription factor activity. RESULTS: Our results show that deletion of the START domain from Arabidopsis Glabra2 (GL2), a representative HD-Zip transcription factor involved in differentiation of the epidermis, results in a complete loss-of-function phenotype, although the protein is correctly localized to the nucleus. Despite low sequence similarly, the mammalian START domain from StAR can functionally replace the HD-Zip-derived START domain. Embedding the START domain within a synthetic transcription factor in yeast, we found that several mammalian START domains from StAR, MLN64 and PCTP stimulated transcription factor activity, as did START domains from two Arabidopsis HD-Zip transcription factors. Mutation of ligand-binding residues within StAR START reduced this activity, consistent with the yeast assay monitoring ligand-binding. The D182L missense mutation in StAR START was shown to affect GL2 transcription factor activity in maintenance of the leaf trichome cell fate. Analysis of in vivo protein-metabolite interactions by mass spectrometry provided direct evidence for analogous lipid-binding activity in mammalian and plant START domains in the yeast system. Structural modeling predicted similar sized ligand-binding cavities of a subset of plant START domains in comparison to mammalian counterparts. CONCLUSIONS: The START domain is required for transcription factor activity in HD-Zip proteins from plants, although it is not strictly necessary for the protein's nuclear localization. START domains from both mammals and plants are modular in that they can bind lipid ligands to regulate transcription factor function in a yeast system. The data provide evidence for an evolutionarily conserved mechanism by which lipid metabolites can orchestrate transcription. We propose a model in which the START domain is used by both plants and mammals to regulate transcription factor activity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Phosphoproteins/genetics , Transcription Factors/metabolism , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Ligands , Mass Spectrometry , Mice , Organisms, Genetically Modified/genetics , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
5.
J Virol ; 86(19): 10281-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22811524

ABSTRACT

We have exploited the ability of transmembrane domains to engage in highly specific protein-protein interactions to construct a new class of small proteins that inhibit HIV infection. By screening a library encoding hundreds of thousands of artificial transmembrane proteins with randomized transmembrane domains (termed "traptamers," for transmembrane aptamers), we isolated six 44- or 45-amino-acid proteins with completely different transmembrane sequences that inhibited cell surface and total expression of the HIV coreceptor CCR5. The traptamers inhibited transduction of human T cells by HIV reporter viruses pseudotyped with R5-tropic gp120 envelope proteins but had minimal effects on reporter viruses with X4-tropic gp120. Optimization of two traptamers significantly increased their activity and resulted in greater than 95% inhibition of R5-tropic reporter virus transduction without inhibiting expression of CD4, the primary HIV receptor, or CXCR4, another HIV coreceptor. In addition, traptamers inhibited transduction mediated by a mutant R5-tropic gp120 protein resistant to maraviroc, a small-molecule CCR5 inhibitor, and they dramatically inhibited replication of an R5-tropic laboratory strain of HIV in a multicycle infection assay. Genetic experiments suggested that the active traptamers specifically interacted with the transmembrane domains of CCR5 and that some of the traptamers interacted with different portions of CCR5. Thus, we have constructed multiple proteins not found in nature that interfere with CCR5 expression and inhibit HIV infection. These proteins may be valuable tools to probe the organization of the transmembrane domains of CCR5 and their relationship to its biological activities, and they may serve as starting points to develop new strategies to inhibit HIV infection.


Subject(s)
Cell Membrane/metabolism , HIV Infections/immunology , Receptors, CCR5/biosynthesis , Amino Acid Sequence , Animals , Biotinylation , Cell Line , Chemokines/metabolism , Cloning, Molecular , Gene Expression Regulation, Viral , Gene Library , HEK293 Cells , HIV Infections/metabolism , Humans , Mice , Molecular Sequence Data , Mutagenesis , Receptors, CCR5/immunology , Receptors, CXCR4/metabolism , Sequence Homology, Amino Acid , T-Lymphocytes/virology
6.
Protein Eng Des Sel ; 24(3): 311-20, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21149273

ABSTRACT

Genetic selection from libraries expressing proteins with randomized amino acid segments is a powerful approach to identify proteins with novel biological activities. Here, we assessed the utility of deep DNA sequencing to characterize the composition, diversity, size and stability of such randomized libraries. We used 454 pyrosequencing to sequence a retroviral library expressing small proteins with randomized transmembrane domains. Despite the potential for unintended random mutagenesis during its construction, the overall hydrophobic composition and diversity of the proteins encoded by the sequenced library conformed well to its design. In addition, our sequencing results allowed us to calculate a more accurate estimate of the number of different proteins encoded by the library and suggested that the traditional methods for estimating the size of randomized libraries may overestimate their true size. Our results further demonstrated that no significant genetic bottlenecks exist in the methods used to express complex retrovirus libraries in mammalian cells and recover library sequences from these cells. These findings suggest that deep sequencing can be used to determine the quality and content of other libraries with randomized segments and to follow individual sequences during selection.


Subject(s)
Cell Membrane/metabolism , Gene Library , Protein Engineering/methods , Retroviridae/genetics , Amino Acid Sequence , Gene Expression , HEK293 Cells , Humans , Molecular Sequence Data , Mutation , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Plasmids/genetics , Quality Control , Retroviridae/physiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...