Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38916997

ABSTRACT

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Subject(s)
Cilia , Hydrocephalus , Microtubules , Animals , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/metabolism , Humans , Mice , Microtubules/metabolism , Male , Cilia/metabolism , Cilia/pathology , Female , Katanin/metabolism , Katanin/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/metabolism , Neurons/metabolism , Ependyma/metabolism , Ependyma/pathology , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
2.
Trends Mol Med ; 29(12): 1059-1075, 2023 12.
Article in English | MEDLINE | ID: mdl-37802664

ABSTRACT

Chiari malformation type 1 (CM1) is the most common structural brain disorder involving the craniocervical junction, characterized by caudal displacement of the cerebellar tonsils below the foramen magnum into the spinal canal. Despite the heterogeneity of CM1, its poorly understood patho-etiology has led to a 'one-size-fits-all' surgical approach, with predictably high rates of morbidity and treatment failure. In this review we present multiplex CM1 families, associated Mendelian syndromes, and candidate genes from recent whole exome sequencing (WES) and other genetic studies that suggest a significant genetic contribution from inherited and de novo germline variants impacting transcription regulation, craniovertebral osteogenesis, and embryonic developmental signaling. We suggest that more extensive WES may identify clinically relevant, genetically defined CM1 subtypes distinguished by unique neuroradiographic and neurophysiological endophenotypes.


Subject(s)
Arnold-Chiari Malformation , Brain Diseases , Humans , Arnold-Chiari Malformation/genetics , Arnold-Chiari Malformation/complications , Arnold-Chiari Malformation/surgery , Foramen Magnum , Human Genetics , Magnetic Resonance Imaging
3.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36803604

ABSTRACT

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Subject(s)
Choroid Plexus , Hydrocephalus , Humans , Blood-Brain Barrier/metabolism , Brain/metabolism , Choroid Plexus/metabolism , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/immunology , Immunity, Innate , Cytokine Release Syndrome/pathology
4.
Annu Rev Physiol ; 85: 47-69, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36351366

ABSTRACT

The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.


Subject(s)
Lung , Humans , Adult , Lung/physiology
5.
Hum Genet ; 142(1): 21-32, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35997807

ABSTRACT

Lambdoid craniosynostosis (CS) is a congenital anomaly resulting from premature fusion of the cranial suture between the parietal and occipital bones. Predominantly sporadic, it is the rarest form of CS and its genetic etiology is largely unexplored. Exome sequencing of 25 kindreds, including 18 parent-offspring trios with sporadic lambdoid CS, revealed a marked excess of damaging (predominantly missense) de novo mutations that account for ~ 40% of sporadic cases. These mutations clustered in the BMP signaling cascade (P = 1.6 × 10-7), including mutations in genes encoding BMP receptors (ACVRL1 and ACVR2A), transcription factors (SOX11, FOXO1) and a transcriptional co-repressor (IFRD1), none of which have been implicated in other forms of CS. These missense mutations are at residues critical for substrate or target sequence recognition and many are inferred to cause genetic gain-of-function. Additionally, mutations in transcription factor NFIX were implicated in syndromic craniosynostosis affecting diverse sutures. Single cell RNA sequencing analysis of the mouse lambdoid suture identified enrichment of mutations in osteoblast precursors (P = 1.6 × 10-6), implicating perturbations in the balance between proliferation and differentiation of osteoprogenitor cells in lambdoid CS. The results contribute to the growing knowledge of the genetics of CS, have implications for genetic counseling, and further elucidate the molecular etiology of premature suture fusion.


Subject(s)
Craniosynostoses , Mice , Animals , Craniosynostoses/genetics , Craniosynostoses/metabolism , Mutation , Signal Transduction/genetics , Transcription Factors/genetics , Cell Differentiation , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism
7.
J Am Soc Nephrol ; 33(6): 1077-1086, 2022 06.
Article in English | MEDLINE | ID: mdl-35577558

ABSTRACT

BACKGROUND: After kidney injury, macrophages transition from initial proinflammatory activation to a proreparative phenotype characterized by expression of arginase-1 (Arg1), mannose receptor 1 (Mrc1), and macrophage scavenger receptor 1 (Msr1). The mechanism by which these alternatively activated macrophages promote repair is unknown. METHODS: We characterized the macrophage and renal responses after ischemia-reperfusion injury with contralateral nephrectomy in LysM-Cre;Arg1fl/fl mice and littermate controls and used in vitro coculture of macrophages and tubular cells to determine how macrophage-expressed arginase-1 promotes kidney repair. RESULTS: After ischemia-reperfusion injury with contralateral nephrectomy, Arg1-expressing macrophages were almost exclusively located in the outer stripe of the medulla adjacent to injured S3 tubule segments containing luminal debris or casts. Macrophage Arg1 expression was reduced by more than 90% in injured LysM-Cre;Arg1fl/fl mice, resulting in decreased mouse survival, decreased renal tubular cell proliferation and decreased renal repair compared with littermate controls. In vitro studies demonstrate that tubular cells exposed apically to dead cell debris secrete high levels of GM-CSF and induce reparative macrophage activation, with those macrophages in turn secreting Arg1-dependent factor(s) that directly stimulate tubular cell proliferation. CONCLUSIONS: GM-CSF-induced, proreparative macrophages express arginase-1, which is required for the S3 tubular cell proliferative response that promotes renal repair after ischemia-reperfusion injury.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Reperfusion Injury , Animals , Arginase/genetics , Arginase/metabolism , Macrophages/physiology , Mice , Mice, Inbred C57BL , Regeneration , Reperfusion Injury/metabolism
8.
J Periodontol ; 93(9): 1366-1377, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35404474

ABSTRACT

BACKGROUND: Periodontal destruction can be the result of different known and yet-to-be-discovered biological pathways. Recent human genetic association studies have implicated interferon-gamma inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) with high periodontal interleukin (IL)-1ß levels and more destructive disease, but mechanistic evidence is lacking. Here, we sought to experimentally validate these observational associations and better understand IFI16 and AIM2's roles in periodontitis. METHODS: Periodontitis was induced in Ifi204-/- (IFI16 murine homolog) and Aim2-/- mice using the ligature model. Chimeric mice were created to identify the main source cells of Ifi204 in the periodontium. IFI16-silenced human endothelial cells were treated with periodontal pathogens in vitro. Periodontal tissues from Ifi204-/- mice were evaluated for alveolar bone (micro-CT), cell inflammatory infiltration (MPO+ staining), Il1b (qRT-PCR), and osteoclast numbers (cathepsin K+ staining). RESULTS: Ifi204-deficient mice> exhibited >20% higher alveolar bone loss than wild-type (WT) (P < 0.05), while no significant difference was found in Aim2-/- mice. Ifi204's effect on bone loss was primarily mediated by a nonbone marrow source and was independent of Aim2. Ifi204-deficient mice had greater neutrophil/macrophage trafficking into gingival tissues regardless of periodontitis development compared to WT. In human endothelial cells, IFI16 decreased the chemokine response to periodontal pathogens. In murine periodontitis, Ifi204 depletion elevated gingival Il1b and increased osteoclast numbers at diseased sites (P < 0.05). CONCLUSIONS: These findings support IFI16's role as a novel regulator of inflammatory cell trafficking to the periodontium that protects against bone loss and offers potential targets for the development of new periodontal disease biomarkers and therapeutics.


Subject(s)
Alveolar Bone Loss , Nuclear Proteins , Periodontitis , Phosphoproteins , Alveolar Bone Loss/genetics , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/prevention & control , Animals , Biomarkers/metabolism , Cathepsin K , Disease Models, Animal , Endothelial Cells/metabolism , Interferon-gamma/metabolism , Interferons/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Periodontitis/genetics , Periodontitis/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism
9.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Article in English | MEDLINE | ID: mdl-35379995

ABSTRACT

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Subject(s)
Hydrocephalus , Animals , Biomechanical Phenomena , Brain/metabolism , Cerebrospinal Fluid/metabolism , Humans , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/genetics , Mice , Neurogenesis/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
10.
Am J Physiol Renal Physiol ; 322(3): F322-F334, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35100823

ABSTRACT

Renal tubular casts originating from detached epithelial cells after ischemia-reperfusion injury (IRI) can obstruct tubules and negatively impact glomerular filtration rate. Using multiphoton imaging of 400-µm-thick kidney sections, the distribution of casts and morphometric measurement of tubules was performed along the entire nephron for the first time. Tubular nuclei are shed before cell detachment, and visually occlusive casts (grade 3) appeared at 12 h after IRI at the S3/thin descending limb (tDL) junction. Grade 3 casts peaked at 24 h after injury [present in 99% of S3, 78% of tDL, 76% of thin ascending limb (tAL), 60% of medullary thick ascending limb (mTAL), and 10% of connecting tubule segments]. Cast formation in the S3 correlated with selective loss of cell numbers from this tubule segment. By day 3, most mTALs and connecting tubules were cast free, whereas 72% of S3 tubules and 58% of tDLs still contained grade 3 casts. Although bulk phagocytosis of cast material by surviving tubular cells was not observed, mass spectrometry identified large numbers of tryptic peptides in the outer medulla, and trypsin levels were significantly increased in the kidney and urine 24 h after IRI. Administration of either antipain or camostat to inhibit trypsin extended cast burden to the S2, led to sustained accumulation of S3 casts after IRI, but did not affect cast burden in the mTAL or renal function. Our data provide detailed and dynamic mapping of tubular cast formation and resolution after IRI that can inform future interventions to accelerate cast clearance and renal recovery.NEW & NOTEWORTHY This detailed characterization of the dynamic distribution of dead cell debris in ischemically injured kidney tubules reveals which cells in the kidney are most severely injured, when and where tubular casts form, and when (and to a lesser extent, how) they are cleared.


Subject(s)
Nephrons , Reperfusion Injury , Glomerular Filtration Rate , Humans , Kidney , Kidney Tubules
11.
Childs Nerv Syst ; 37(11): 3341-3353, 2021 11.
Article in English | MEDLINE | ID: mdl-34164718

ABSTRACT

Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells, and physical irritants. However, inappropriately triggered or sustained inflammation can respectively initiate, propagate, or prolong disease. Post-hemorrhagic (PHH) and post-infectious hydrocephalus (PIH) are the most common forms of hydrocephalus worldwide. They are treated using neurosurgical cerebrospinal fluid (CSF) diversion techniques with high complication and failure rates. Despite their distinct etiologies, clinical studies in human patients have shown PHH and PIH share similar CSF cytokine and immune cell profiles. Here, in light of recent work in model systems, we discuss the concept of "inflammatory hydrocephalus" to emphasize potential shared mechanisms and potential therapeutic vulnerabilities of these disorders. We propose that this change of emphasis could shift our thinking of PHH and PIH from a framework of life-long neurosurgical disorders to that of preventable conditions amenable to immunomodulation.


Subject(s)
Hydrocephalus , Cytokines , Hemorrhage , Humans , Hydrocephalus/surgery , Inflammation
12.
JAMA Neurol ; 78(8): 993-1003, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34125151

ABSTRACT

Importance: Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals. Objective: To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk. Design, Setting, and Participants: A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort. Main Outcomes and Measures: Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue. Results: Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10-6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non-East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways. Conclusions and Relevance: These findings provide the largest collection to date of non-East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.


Subject(s)
Formins/genetics , Moyamoya Disease/genetics , Adult , Age of Onset , Cell Adhesion Molecules/genetics , Child , Child, Preschool , Cohort Studies , Computer Simulation , Exome/genetics , Female , Genetic Variation , Humans , Infant , Magnetic Resonance Imaging , Male , Middle Aged , Moyamoya Disease/diagnostic imaging , Phenotype , Sequence Analysis, RNA , White People , Exome Sequencing
13.
Nat Med ; 26(11): 1754-1765, 2020 11.
Article in English | MEDLINE | ID: mdl-33077954

ABSTRACT

Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH.


Subject(s)
Cerebral Ventricles/metabolism , Genetic Predisposition to Disease , Hydrocephalus/genetics , Neurogenesis/genetics , Brain/diagnostic imaging , Brain/pathology , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Exome/genetics , Female , Humans , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/diagnostic imaging , Hydrocephalus/pathology , Male , Mutation/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neuroglia/metabolism , Neuroglia/pathology , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
14.
J Bone Miner Res ; 35(7): 1352-1362, 2020 07.
Article in English | MEDLINE | ID: mdl-32154933

ABSTRACT

FGF-23 has arisen as an early biomarker of renal dysfunction, but at the onset of chronic kidney disease (CKD), data suggest that FGF-23 may be produced independently of the parathyroid hormone (PTH), 1,25(OH)2 -vitamin D3 signaling axis. Iron status is inversely correlated to the level of circulating FGF-23, and improvement in iron bioavailability within patients correlates with a decrease in FGF-23. Alternately, recent evidence also supports a regulatory role of inflammatory cytokines in the modulation of FGF-23 expression. To determine the identity of the signal from the kidney-inducing upregulation of osteocytic FGF-23 at the onset of CKD, we utilized a mouse model of congenital CKD that fails to properly mature the glomerular capillary tuft. We profiled the sequential presentation of indicators of renal dysfunction, phosphate imbalance, and iron bioavailability and transport to identify the events that initiate osteocytic production of FGF-23 during the onset of CKD. We report here that elevations in circulating intact-FGF-23 coincide with the earliest indicators of renal dysfunction (P14), and precede changes in serum phosphate or iron homeostasis. Serum PTH was also not changed within the first month. Instead, production of the inflammatory protein IL-1ß from the kidney and systemic elevation of it in the circulation matched the induction of FGF-23. IL-1ß's ability to induce FGF-23 was confirmed on bone chips in culture and within mice in vivo. Furthermore, neutralizing antibody to IL-1ß blocked FGF-23 expression in both our congenital model of CKD and a second nephrotoxic serum-mediated model. We conclude that early CKD resembles a situation of primary FGF-23 excess mediated by inflammation. These findings do not preclude that altered mineral availability or anemia can later modulate FGF-23 levels but find that in early CKD they are not the driving stimulus for the initial upregulation of FGF-23. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Renal Insufficiency, Chronic , Tumor Necrosis Factor-alpha , Animals , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Forkhead Transcription Factors , Humans , Interleukin-1beta , Kidney , Male , Mice , Minerals , Parathyroid Hormone , Phosphates
15.
Sci Rep ; 10(1): 386, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941974

ABSTRACT

Polycystin 2 (PC2 or TRPP1, formerly TRPP2) is a calcium-permeant Transient Receptor Potential (TRP) cation channel expressed primarily on the endoplasmic reticulum (ER) membrane and primary cilia of all cell and tissue types. Despite its ubiquitous expression throughout the body, studies of PC2 have focused primarily on its role in the kidney, as mutations in PC2 lead to the development of autosomal dominant polycystic kidney disease (ADPKD), a debilitating condition for which there is no cure. However, the endogenous role that PC2 plays in the regulation of general cellular homeostasis remains unclear. In this study, we measure how PC2 expression changes in different pathological states, determine that its abundance is increased under conditions of cellular stress in multiple tissues including human disease, and conclude that PC2-deficient cells have increased susceptibility to cell death induced by stress. Our results offer new insight into the normal function of PC2 as a ubiquitous stress-sensitive protein whose expression is up-regulated in response to cell stress to protect against pathological cell death in multiple diseases.


Subject(s)
Acute Kidney Injury/pathology , Cell Death , Heart Diseases/pathology , Non-alcoholic Fatty Liver Disease/pathology , Protective Agents/metabolism , Reperfusion Injury/pathology , TRPP Cation Channels/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Animals , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Heart Diseases/etiology , Heart Diseases/metabolism , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , TRPP Cation Channels/genetics
16.
J Am Soc Nephrol ; 30(3): 443-459, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30745418

ABSTRACT

BACKGROUND: SEC63 encodes a resident protein in the endoplasmic reticulum membrane that, when mutated, causes human autosomal dominant polycystic liver disease. Selective inactivation of Sec63 in all distal nephron segments in embryonic mouse kidney results in polycystin-1-mediated polycystic kidney disease (PKD). It also activates the Ire1α-Xbp1 branch of the unfolded protein response, producing Xbp1s, the active transcription factor promoting expression of specific genes to alleviate endoplasmic reticulum stress. Simultaneous inactivation of Xbp1 and Sec63 worsens PKD in this model. METHODS: We explored the renal effects of postnatal inactivation of Sec63 alone or with concomitant inactivation of Xbp1 or Ire1α, specifically in the collecting ducts of neonatal mice. RESULTS: The later onset of inactivation of Sec63 restricted to the collecting duct does not result in overt activation of the Ire1α-Xbp1 pathway or cause polycystin-1-dependent PKD. Inactivating Sec63 along with either Xbp1 or Ire1α in this model causes interstitial inflammation and associated fibrosis with decline in kidney function over several months. Re-expression of XBP1s in vivo completely rescues the chronic kidney injury observed after inactivation of Sec63 with either Xbp1 or Ire1α. CONCLUSIONS: In the absence of Sec63, basal levels of Xbp1s activity in collecting ducts is both necessary and sufficient to maintain proteostasis (protein homeostasis) and protect against inflammation, myofibroblast activation, and kidney functional decline. The Sec63-Xbp1 double knockout mouse offers a novel genetic model of chronic tubulointerstitial kidney injury, using collecting duct proteostasis defects as a platform for discovery of signals that may underlie CKD of disparate etiologies.

17.
Sci Transl Med ; 10(441)2018 05 16.
Article in English | MEDLINE | ID: mdl-29769287

ABSTRACT

Acute kidney injury (AKI) represents the most frequent complication after cardiac surgery. Macrophage migration inhibitory factor (MIF) is a stress-regulating cytokine that was shown to protect the heart from myocardial ischemia-reperfusion injury, but its role in the pathogenesis of AKI remains unknown. In an observational study, serum and urinary MIF was quantified in 60 patients scheduled for elective conventional cardiac surgery with the use of cardiopulmonary bypass. Cardiac surgery triggered an increase in MIF serum concentrations, and patients with high circulating MIF (>median) 12 hours after surgery had a significantly reduced risk of developing AKI (relative risk reduction, 72.7%; 95% confidence interval, 12 to 91.5%; P = 0.03). Experimental AKI was induced in wild-type and Mif-/- mice by 30 min of ischemia followed by 6 or 24 hours of reperfusion, or by rhabdomyolysis. Mif-deficient mice exhibited increased tubular cell injury, increased regulated cell death (necroptosis and ferroptosis), and enhanced oxidative stress. Therapeutic administration of recombinant MIF after ischemia-reperfusion in mice ameliorated AKI. In vitro treatment of tubular epithelial cells with recombinant MIF reduced cell death and oxidative stress as measured by glutathione and thiobarbituric acid reactive substances in the setting of hypoxia. Our data provide evidence of a renoprotective role of MIF in experimental ischemia-reperfusion injury by protecting renal tubular epithelial cells, consistent with our observation that high MIF in cardiac surgery patients is associated with a reduced incidence of AKI.


Subject(s)
Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Cardiac Surgical Procedures/adverse effects , Macrophage Migration-Inhibitory Factors/blood , Macrophage Migration-Inhibitory Factors/urine , Protective Agents/metabolism , Acute Kidney Injury/epidemiology , Acute Kidney Injury/urine , Animals , Antigens, Differentiation, B-Lymphocyte/chemistry , Antigens, Differentiation, B-Lymphocyte/metabolism , Antioxidants/metabolism , Cell Death , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Humans , Incidence , Inflammation/pathology , Kidney/blood supply , Kidney/pathology , Lipid Peroxidation , Lipocalin-2/urine , Macrophage Migration-Inhibitory Factors/deficiency , Mice, Inbred C57BL , Oxidative Stress , Protein Domains , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Reperfusion Injury/complications , Reperfusion Injury/pathology , Rhabdomyolysis/pathology
18.
Dev Dyn ; 244(12): 1538-49, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26335666

ABSTRACT

BACKGROUND: Development of the pronephros in Xenopus laevis is largely dependent on retinoic acid signaling at the time of kidney field specification with the simultaneous occurrence of a necessary calcium signaling. At the crossroads of these two signaling pathways, we studied the role of Hspa9 (heat shock 70 kDa protein 9) encoding a mitochondrial chaperone in pronephros development. RESULTS: We first showed that Hspa9 is highly expressed in the pronephros territory and elongating nephric duct. We then observed that upon reduced retinoic acid signaling hspa9 expression was reduced as pax8 and pax2. Overexpression of hspa9 enlarged the pax8 positive pronephros territory, leading to a larger pronephric tubule. Loss of function of hspa9 in the kidney field using morpholino approach severely reduced pax8 expression and pronephros formation. Phenotypic rescue was achieved by co-injection of the full-length murine Hspa9 mRNA. However, no rescue was observed when Hspa9 mRNA lacking the mitochondrial-targeting sequence was injected, as this truncated form is able to interfere with pronephros formation when injected solely. CONCLUSIONS: Hspa9 is an important mediator for pronephros development through modulation of pax8. Mitochondrial functions of hspa9 are likely to be involved in specification of pronephric cell fate.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/metabolism , Pronephros/embryology , Xenopus Proteins/metabolism , Animals , Gene Expression Regulation, Developmental , HSP70 Heat-Shock Proteins/genetics , Mitochondrial Proteins/genetics , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Pronephros/metabolism , Signal Transduction/physiology , Tretinoin/metabolism , Xenopus Proteins/genetics , Xenopus laevis
19.
J Am Soc Nephrol ; 26(6): 1334-45, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25388222

ABSTRACT

After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4-stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury.


Subject(s)
Acute Kidney Injury/metabolism , Gene Expression Regulation , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Macrophage Activation/genetics , Reperfusion Injury/metabolism , Acute Kidney Injury/physiopathology , Analysis of Variance , Animals , Blotting, Western , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Immunohistochemistry , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , Multivariate Analysis , Phenotype , Random Allocation , Real-Time Polymerase Chain Reaction/methods , Reperfusion Injury/physiopathology , Signal Transduction , Up-Regulation
20.
J Am Soc Nephrol ; 25(2): 329-37, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24136921

ABSTRACT

Renal proximal tubule epithelial cells express high levels of the hepatocyte growth factor receptor Met, and both the receptor and ligand are upregulated after ischemic injury. Activation of the Met receptor after hepatocyte growth factor stimulation in vitro promotes activities involved in kidney repair, including cell survival, migration, and proliferation. However, characterizing the in vivo role of these signaling events in proximal tubule responses to kidney injury has been difficult because global Met knockout results in embryonic lethality due to placental and liver abnormalities. Here, we used γGT-Cre to knockout Met receptor expression selectively in the proximal tubules of mice (γGT-Cre;Met(fl/fl)). The kidneys of these mice developed normally, but exhibited increased initial tubular injury, tubular cell apoptosis, and serum creatinine after ischemia/reperfusion compared with γGT-Cre;Met(+/+) kidneys. These changes in γGT-Cre;Met(fl/fl) mice correlated with a selective reduction in PI3K/Akt activation in response to injury and subsequent decreases in inhibitory phosphorylation of the proapoptotic factor Bad and activating phosphorylation of the ribosomal regulatory protein p70-S6 kinase. Moreover, tubular cell proliferation after ischemia/reperfusion was delayed in γGT-Cre;Met(fl/fl) mice. In conclusion, this study identifies Met-dependent phosphoinositide 3-kinase activation in proximal tubules as a critical determinant of initial tubular cell survival and reparative proliferation after ischemic injury.


Subject(s)
Acute Kidney Injury/enzymology , Kidney/blood supply , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor Protein-Tyrosine Kinases/physiology , Reperfusion Injury/enzymology , Signal Transduction/physiology , Animals , Apoptosis , Gene Knockdown Techniques , Kidney/enzymology , Kidney Tubules, Proximal/enzymology , Kidney Tubules, Proximal/pathology , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Phosphorylation , Protein Processing, Post-Translational , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , bcl-Associated Death Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...