Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611910

ABSTRACT

This is the first comprehensive review of rhenium(I) carbonyl complexes with 2,2':6',2″-terpyridine-based ligands (R-terpy)-encompassing their synthesis, molecular features, photophysical behavior, and potential applications. Particular attention has been devoted to demonstrating how the coordination mode of 2,2':6',2″-terpyridine (terpy-κ2N and terpy-κ3N), structural modifications of terpy framework (R), and the nature of ancillary ligands (X-mono-negative anion, L-neutral ligand) may tune the photophysical behavior of Re(I) complexes [Re(X/L)(CO)3(R-terpy-κ2N)]0/+ and [Re(X/L)(CO)2(R-terpy-κ3N)]0/+. Our discussion also includes homo- and heteronuclear multicomponent systems with {Re(CO)3(R-terpy-κ2N)} and {Re(CO)2(R-terpy-κ3N)} motifs. The presented structure-property relationships are of high importance for controlling the photoinduced processes in these systems and making further progress in the development of more efficient Re-based luminophores, photosensitizers, and photocatalysts for modern technologies.

2.
Phys Chem Chem Phys ; 26(7): 6265-6276, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305747

ABSTRACT

Controlling the ultrafast photodynamics of metal-free organic molecules has great potential for technological applications. In this work, we use solvent polarity and viscosity as "external knobs" to govern the photodynamics of an electron-donating derivative of 2,2':6',2''-terpyridine (terpy), namely 4'-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2':6',2''-terpyridine (tBuTPAterpy). We combine femtosecond fluorescence upconversion (FlUC), transient absorption (TA) and quantum mechanical calculations to provide a comprehensive description of the tBuTPAterpy's photodynamics. Our results demonstrate that, by changing the solvent, the time scale of light-induced conformational changes of the system can be tuned over two orders of magnitude, controlling the tBuTPAterpy fluorescence spectral region and yield. As a result, depending on the local environment, tBuTPAterpy can act either as an "early bird" or a "night owl", with a tunability that makes it a promising candidate for metal-free sensors.

3.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296665

ABSTRACT

The introduction of an electron-donating triphenylamine motive into a 2,2',6',2''-terpyridine (terpy) moiety, a cornerstone molecular unit in coordination chemistry, opens new ways for a rational design of photophysical properties of organic and inorganic compounds. A push-pull compound, 4'-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2',6',2''-terpyridine (tBuTPAterpy), was thoroughly investigated with the use of steady-state and time-resolved spectroscopies and Density Functional Theory (DFT) calculations. Our results demonstrate that solvent parameters have an enormous influence on the optical properties of this molecule, acting as knobs for external control of its photophysics. The Intramolecular Charge Transfer (ICT) process introduces a remarkable solvent polarity effect on the emission spectra without affecting the lowest absorption band, as confirmed by DFT simulations, including solvation effects. The calculations ascribe the lowest absorption transitions to two singlet ICT excited states, S1 and S2, with S1 having several orders of magnitude higher oscillator strength than the "dark" S2 state. Temperature and viscosity investigations suggest the existence of two emitting excited states with different structural conformations. The phosphorescence emission band observed at 77 K is assigned to a localized 3terpy state. Finally, protonation studies show that tBuTPAterpy undergoes a reversible process, making it a promising probe of the pH level in the context of acidity determination.


Subject(s)
Amines , Electrons , Viscosity , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL