Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Animals (Basel) ; 13(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508033

ABSTRACT

One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.

2.
Eur J Cell Biol ; 102(3): 151340, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423036

ABSTRACT

The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.


Subject(s)
Aging , Neoplasms , Humans , Aged , Neoplasms/genetics , Clone Cells , Tumor Microenvironment
3.
Nature ; 616(7955): 159-167, 2023 04.
Article in English | MEDLINE | ID: mdl-37020004

ABSTRACT

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Subject(s)
Adenocarcinoma of Lung , Air Pollutants , Air Pollution , Cell Transformation, Neoplastic , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Environmental Exposure , ErbB Receptors/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Particulate Matter/adverse effects , Particulate Matter/analysis , Particle Size , Cohort Studies , Macrophages, Alveolar/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology
4.
Mol Oncol ; 16(18): 3238-3258, 2022 09.
Article in English | MEDLINE | ID: mdl-35726685

ABSTRACT

Aging represents the major risk factor for the development of cancer and many other diseases. Recent findings show that normal tissues become riddled with expanded clones that are frequently driven by cancer-associated mutations in an aging-dependent fashion. Additional studies show how aged tissue microenvironments promote the initiation and progression of malignancies, while young healthy tissues actively suppress the outgrowth of malignant clones. Here, we discuss conserved mechanisms that eliminate poorly functioning or potentially malignant cells from our tissues to maintain organismal health and fitness. Natural selection acts to preserve tissue function and prevent disease to maximize reproductive success but these mechanisms wane as reproduction becomes less likely. The ensuing age-dependent tissue decline can impact the shape and direction of clonal somatic evolution, with lifestyle and exposures influencing its pace and intensity. We also consider how aging- and exposure-dependent clonal expansions of "oncogenic" mutations might both increase cancer risk late in life and contribute to tissue decline and non-malignant disease. Still, we can marvel at the ability of our bodies to avoid cancers and other diseases despite the accumulation of billions of cells with cancer-associated mutations.


Subject(s)
Clonal Evolution , Neoplasms , Aged , Aging/genetics , Aging/pathology , Clone Cells/pathology , Humans , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment
5.
NPJ Biofilms Microbiomes ; 7(1): 85, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862421

ABSTRACT

Diet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Akkermansia , Animals , Lactobacillus , Rats , Verrucomicrobia
6.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34571918

ABSTRACT

Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.


Subject(s)
Aging , Cell Transformation, Neoplastic/pathology , Neoplasms/pathology , Aged , Humans , Neoplasms/etiology
7.
Neoplasia ; 23(10): 1029-1036, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34500336

ABSTRACT

Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.

8.
Nutrition ; 86: 111177, 2021 06.
Article in English | MEDLINE | ID: mdl-33631619

ABSTRACT

Moderate caloric restriction (CR) is an effective strategy to delay the onset of chronic disease states. Conversely, social isolation (SI) carries an increased risk of morbidity and mortality from several causes. The present studies were designed to investigate the long-term effect of the two combined exposures. Two-month-old male rats of the Fischer 344 strain were fed either ad libitum or under a regimen of CR, and each of the two animal sets were housed either in group or isolation. Food consumption and animal growth curves were as expected during the first 6 wk of observation. However, starting at 2 mo and continuing until the fifth month of follow up, rats exposed to both CR and SI showed signs of altered feeding behavior and were unable to complete their (already restricted) meal. Furthermore, altered behavior was accompanied by a corresponding decrease in growth rate until no further increase in body weight was observed. Restoration of group-housing conditions led to a reversal of this phenotype. We conclude that chronic moderate CR and SI synergize to induce anorexia-like behavior, representing a simple and reproducible model to study such an eating disorder.


Subject(s)
Anorexia , Caloric Restriction , Animals , Anorexia/etiology , Body Weight , Feeding Behavior , Male , Rats , Social Isolation
9.
World J Hepatol ; 12(8): 475-484, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32952874

ABSTRACT

Cell competition is now a well-established quality control strategy to optimize cell and tissue fitness in multicellular organisms. While pursuing this goal, it is also effective in selecting against altered/defective cells with putative (pre)-neoplastic potential, thereby edging the risk of cancer development. The flip side of the coin is that the molecular machinery driving cell competition can also be co-opted by neoplastic cell populations to expand unchecked, outside the boundaries of tissue homeostatic control. This review will focus on information that begins to emerge regarding the role of cell competition in liver physiology and pathology. Liver repopulation by normal transplanted hepatocytes is an interesting field of investigation in this regard. The biological coordinates of this process share many features suggesting that cell competition is a driving force for the clearance of endogenous damaged hepatocytes by normal donor-derived cells, as previously proposed. Intriguing analogies between liver repopulation and carcinogenesis will be briefly discussed and the potential dual role of cell competition, as a barrier or a spur to neoplastic development, will be considered. Cell competition is in essence a cooperative strategy organized at tissue level. One facet of such cooperative attitude is expressed in the elimination of altered cells which may represent a threat to the organismal community. On the other hand, the society of cells can be disrupted by the emergence of selfish clones, exploiting the molecular bar codes of cell competition, thereby paving their way to uncontrolled growth.

10.
J Cell Mol Med ; 24(7): 4350-4355, 2020 04.
Article in English | MEDLINE | ID: mdl-32142212

ABSTRACT

Human Amniotic Epithelial Cells (hAEC) isolated from term placenta are a promising source for regenerative medicine. However, it has long been debated whether the hAEC population consists of heterogeneous or homogeneous cells. In a previous study, we investigated the characteristics of hAEC isolated from four different regions of the amniotic membrane finding significant heterogeneity. The aim of this study was to evaluate the hepatic differentiation capability of hAEC isolated from these four regions. Human term placentae were collected after caesarean section and hAEC were isolated from four regions of the amniotic membrane (R1-R4, according to their relative distance from the umbilical cord) and treated in hepatic differentiation conditions for 14 days. hAEC-derived hepatocyte-like cells showed marked differences in the expression of hepatic markers: R4 showed higher levels of Albumin and Hepatocyte Nuclear Factor (HNF) 4α whereas R1 expressed higher Cytochrome P450 enzymes, both at the gene and protein level. These preliminary results suggest that hAEC isolated from R1 and R4 of the amniotic membrane are more prone to hepatic differentiation. Therefore, the use of hAEC from a specific region of the amniotic membrane should be taken into consideration as it could have an impact on the outcome of therapeutic applications.


Subject(s)
Amnion/cytology , Cell Differentiation/genetics , Liver/cytology , Placenta/cytology , Amnion/metabolism , Epithelial Cells/cytology , Female , Gene Expression Regulation, Developmental/genetics , Humans , Liver/metabolism , Placenta/metabolism , Pregnancy
11.
Br J Cancer ; 122(7): 943-952, 2020 03.
Article in English | MEDLINE | ID: mdl-32042067

ABSTRACT

Why do we get cancer mostly when we are old? According to current paradigms, the answer is simple: mutations accumulate in our tissues throughout life, and some of these mutations contribute to cancers. Although mutations are necessary for cancer development, a number of studies shed light on roles for ageing and exposure-dependent changes in tissue landscapes that determine the impact of oncogenic mutations on cellular fitness, placing carcinogenesis into an evolutionary framework. Natural selection has invested in somatic maintenance to maximise reproductive success. Tissue maintenance not only ensures functional robustness but also prevents the occurrence of cancer through periods of likely reproduction by limiting selection for oncogenic events in our cells. Indeed, studies in organisms ranging from flies to humans are revealing conserved mechanisms to eliminate damaged or oncogenically initiated cells from tissues. Reports of the existence of striking numbers of oncogenically initiated clones in normal tissues and of how this clonal architecture changes with age or external exposure to noxious substances provide critical insight into the early stages of cancer development. A major challenge for cancer biology will be the integration of these studies with epidemiology data into an evolutionary theory of carcinogenesis, which could have a large impact on addressing cancer risk and treatment.


Subject(s)
Aging/pathology , Tumor Microenvironment/genetics , Aged , Aged, 80 and over , Biological Evolution , Female , Humans , Male , Middle Aged , Mutation , Neoplasms
12.
Nutrients ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973116

ABSTRACT

A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5' of the 18S and the 5' of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR.


Subject(s)
Aging/metabolism , Caloric Restriction , DNA Methylation/physiology , Genetic Loci/physiology , RNA, Ribosomal/metabolism , Animals , DNA, Ribosomal/metabolism , Epigenesis, Genetic , Humans , Liver/metabolism , Longevity/physiology , Male , Promoter Regions, Genetic/physiology , Rats
13.
Front Microbiol ; 10: 1733, 2019.
Article in English | MEDLINE | ID: mdl-31417524

ABSTRACT

Sourdough-leavened bread (SB) is acknowledged for its great variety of valuable effects on consumer's metabolism and health, including a low glycemic index and a reduced content of the possible carcinogen acrylamide. Here, we aimed to investigate how these effects influence the gut microbiota composition and functions. Therefore, we subjected rats to a diet supplemented with SB, baker's yeast leavened bread (BB), or unsupplemented diet (chow), and, after 4 weeks of treatment, their gut microbiota was analyzed using a metaproteogenomic approach. As a result, diet supplementation with SB led to a reduction of specific members of the intestinal microbiota previously associated to low protein diets, namely Alistipes and Mucispirillum, or known as intestinal pathobionts, i.e., Mycoplasma. Concerning functions, asparaginases expressed by Bacteroides were observed as more abundant in SB-fed rats, leading to hypothesize that in their colonic microbiota the enzyme substrate, asparagine, was available in higher amounts than in BB- and chow-fed rats. Another group of protein families, expressed by Clostridium, was detected as more abundant in animal fed SB-supplemented diet. Of these, manganese catalase, small acid-soluble proteins (SASP), Ser/Thr kinase PrkA, and V-ATPase proteolipid subunit have been all reported to take part in Clostridium sporulation, strongly suggesting that the diet supplementation with SB might promote environmental conditions inducing metabolic dormancy of Clostridium spp. within the gut microbiota. In conclusion, our data describe the effects of SB consumption on the intestinal microbiota taxonomy and functions in rats. Moreover, our results suggest that a metaproteogenomic approach can provide evidence of the interplay between metabolites deriving from bread digestion and microbial metabolism.

14.
Aging (Albany NY) ; 11(11): 3851-3863, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31188781

ABSTRACT

Aging increases the risk of cancer partly through alterations in the tissue microenvironment. Time-restricted feeding (TRF) is being proposed as an effective strategy to delay biological aging. In the present studies, we assessed the effect of long-term exposure to TRF on the emergence of the age-associated, neoplastic-prone tissue landscape. Animals were exposed to either ad libitum feeding (ALF) or TRF for 18 months and then transplanted with hepatocytes isolated from pre-neoplastic nodules. Both groups were continued ALF and the growth of transplanted cells was evaluated 3 months later. A significant decrease in frequency of larger size clusters of pre-neoplastic hepatocytes was seen in TRF-exposed group compared to controls. Furthermore, TRF modified several parameters related to both liver and systemic aging towards the persistence of a younger phenotype, including a decrease in liver cell senescence, diminished fat accumulation and up-regulation of SIRT1 in the liver, down-regulation of plasma IGF-1, decreased levels of plasma lipoproteins and up-regulation of hippocampal brain-derived growth factor (BDNF).These results indicate that TRF was able to delay the onset of the neoplastic-prone tissue landscape typical of aging. To our knowledge, this is the first investigation to describe a direct beneficial effect of TRF on early phases of carcinogenesis.


Subject(s)
Aging/pathology , Eating/physiology , Hepatocytes/pathology , Liver/pathology , Neoplasms/pathology , Animals , Cellular Senescence/physiology , Disease Models, Animal , Fasting , Male , Rats , Tumor Microenvironment/physiology
15.
Sci Rep ; 8(1): 14778, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30283130

ABSTRACT

Caloric restriction (CR) is known to promote health and longevity, likely via modification of the gut microbiota (GM). However, functional and metabolic changes induced in the GM during CR are still unidentified. Here, we investigated the short- and long-term effects of CR on the rat GM using a metaproteogenomic approach. We show that a switch from ad libitum (AL) low fat diet to CR in young rats is able to induce rapid and deep changes in their GM metaproteomic profile, related to a reduction of the Firmicutes/Bacteroidetes ratio and an expansion of lactobacilli. Specifically, we observed a significant change in the expression of the microbial enzymes responsible for short-chain fatty acid biosynthesis, with CR boosting propionogenesis and limiting butyrogenesis and acetogenesis. Furthermore, these CR-induced effects were maintained up to adulthood and started to be reversed after a short-term diet change. We also found that CR alters the abundance of an array of host proteins released in stool, mainly related to epithelial barrier integrity and inflammation. Hence, our results provide thorough information about CR-induced modifications to GM and host functional activity, and might constitute the basis for novel GM-based approaches aimed at monitoring the effectiveness of dietary interventions.


Subject(s)
Adipogenesis/genetics , Caloric Restriction , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/genetics , Animals , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Firmicutes/isolation & purification , Firmicutes/metabolism , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Lipogenesis/genetics , Longevity/genetics , Longevity/physiology , Rats
16.
Trends Cancer ; 4(5): 342-348, 2018 05.
Article in English | MEDLINE | ID: mdl-29709258

ABSTRACT

The terms 'development' and 'evolution' are both used to describe the unfolding of the carcinogenic process. However, there is increasing awareness of an essential difference in the meanings of these two terms with reference to cancer. We discuss evidence suggesting that the concepts of development and evolution are both pertinent to the description of carcinogenesis; however, they appropriately apply to distinct phases of a multistep process. Such a distinction bears important implications for the study and management of cancer.


Subject(s)
Carcinogenesis , Animals , Humans , Neoplasms/pathology , Tumor Microenvironment
17.
Cell Transplant ; 27(1): 23-30, 2018 01.
Article in English | MEDLINE | ID: mdl-29562778

ABSTRACT

Amniotic epithelial cells (AECs) represent a useful and noncontroversial source for liver-based regenerative medicine, as they can differentiate into hepatocytes upon transplantation into the liver. However, the possibility that AECs can differentiate into other liver cell types, such as hepatic sinusoidal endothelial cells (HSECs), has never been assessed. In order to test this hypothesis, rat- and human-derived AECs (rAECs and hAECs, respectively) were subjected to endothelial cell tube formation assay in vitro. Moreover, to evaluate differentiation in vivo, the retrorsine (RS) model of liver repopulation was used. Pyrrolizidine alkaloids (including RS) are known to target both hepatocytes and endothelial cells, inducing cell enlargement and inhibition of cell cycle progression. rAECs and hAECs were able to form capillary-like structures when cultured under proangiogenic conditions. For in vivo experiments, rAECs were obtained from dipeptidyl peptidase type IV (DPP-IV, CD26) donors and were transplanted into the liver of recipient CD26 negative animals pretreated with RS. rAEC-derived cells were engrafted in between hepatocytes and resembled HSECs as assessed by morphological analysis and the pattern of expression of CD26. Donor-derived CD26+ cells coexpressed HSEC markers RECA-1 and SE-1, while they lacked expression of typical hepatocyte markers (i.e., cytochrome P450, hepatocyte nuclear factor 4α). As such, these results provide the first evidence that AECs can respond to proangiogenic signals in vitro and differentiate into HSECs in vivo. Furthermore, they support the conclusion that AECs possesses great plasticity and represents a promising tool in the field of regenerative medicine both in the liver and in other organs.


Subject(s)
Amnion/cytology , Capillaries/cytology , Epithelial Cells/cytology , Liver/cytology , Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cell Transplantation , Epithelial Cells/metabolism , Humans , Rats
18.
Epidemiol Prev ; 42(1): 34-39, 2018.
Article in Italian | MEDLINE | ID: mdl-29506359

ABSTRACT

OBJECTIVES: to explore clinicians vision on hospital discharge records in order to identify useful elements to foster a more accurate compiling. DESIGN: qualitative research with phenomenological approach. SETTING AND PARTICIPANTS: participants were selected through purposive sampling among clinicians of two hospitals located in Sardinia; the sample included 76 people (32 medical directors and 44 doctors in training). MAIN OUTCOME MEASURES: identified codes for themes under investigation: vision of accurate compiling, difficulties, and proposals. RESULTS: collected data highlighted two prevailing visions, respectively focused on the importance of an accurate compiling and on the burden of such activity. The accurate compiling is hindered by the lack of motivation and training, by the limits of the registration system and the information technology, by the distortions induced by the prominent role of the hospital discharge records in the evaluation processes. Training, timely updating of the information system accompanied by a proper cross-cultural validation process, improvement of the computer system, and activation of support services could promote more accurate compiling. CONCLUSIONS: the implementation of services, unconnected with evaluation and control processes, dedicated to training and support in the compiling of the hospital discharge records and in the conduction of related epidemiological studies would facilitate the compliance to the compilation. Such services will make tangible the benefits obtainable from this registration system, increasing skills, motivation, ownership, and facilitating greater accuracy in compiling.


Subject(s)
Data Collection/methods , Hospital Records , Medical Staff, Hospital/psychology , Patient Discharge , Physician Executives/psychology , Data Accuracy , Electronic Health Records , Hospital Records/statistics & numerical data , Humans , Italy , Medical Record Administrators/education , Motivation , Patient Discharge/statistics & numerical data , Qualitative Research
19.
Gut Microbes ; 9(2): 104-114, 2018 03 04.
Article in English | MEDLINE | ID: mdl-28891744

ABSTRACT

Previous studies indicated that caloric restricted diet enables to lower significantly the risk of cardiovascular and metabolic diseases. In experimental animal models, life-long lasting caloric restriction (CR) was demonstrated to induce changes of the intestinal microbiota composition, regardless of fat content and/or exercise. To explore the potential impact of short and long-term CR treatment on the gut microbiota, we conducted an analysis of fecal microbiota composition in young and adult Fisher 344 rats treated with a low fat feed under ad libitum (AL) or CR conditions (70%). We report here significant changes of the rat fecal microbiota that arise rapidly in young growing animals after short-term administration of a CR diet. In particular, Lactobacillus increased significantly after 8 weeks of CR treatment and its relative abundance was significantly higher in CR vs AL fed animals after 36 weeks of dietary intervention. Taken together, our data suggest that Lactobacillus intestinal colonization is hampered in AL fed young rats compared to CR fed ones, while health-promoting CR diet intervention enables the expansion of this genus rapidly and persistently up to adulthood.


Subject(s)
Bacteria/growth & development , Caloric Restriction , Feces/microbiology , Gastrointestinal Microbiome/physiology , Lactobacillus/growth & development , Animals , Bacteria/classification , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/genetics , Diet , Lactobacillus/classification , Models, Animal , RNA, Ribosomal, 16S/genetics , Rats , Rats, Inbred F344
20.
Cell Transplant ; 26(9): 1530-1537, 2017 09.
Article in English | MEDLINE | ID: mdl-29113461

ABSTRACT

The evidence linking aging and cancer is overwhelming. Findings emerging from the field of regenerative medicine reinforce the notion that aging and cancer are profoundly interrelated in their pathogenetic pathways. We discuss evidence to indicate that age-associated alterations in the tissue microenvironment contribute to the emergence of a neoplastic-prone tissue landscape, which is able to support the selective growth of preneoplastic cell populations. Interestingly, tissue contexts that are able to select for the growth of preneoplastic cells, including the aged liver microenvironment, are also supportive for the clonal expansion of normal, homotypic, transplanted cells. This suggests that the growth of normal and preneoplastic cells is possibly driven by similar mechanisms, implying that strategies based on principles of regenerative medicine might be applicable to modulate neoplastic disease.


Subject(s)
Hepatocytes/metabolism , Neoplasms/metabolism , Regenerative Medicine/methods , Animals , Cell Transformation, Neoplastic/genetics , Humans , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...