Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(8)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470490

ABSTRACT

Excessive lipolysis in white adipose tissue (WAT) leads to insulin resistance (IR) and ectopic fat accumulation in insulin-sensitive tissues. However, the impact of Gi-coupled receptors in restraining adipocyte lipolysis through inhibition of cAMP production remained poorly elucidated. Given that the Gi-coupled P2Y13 receptor (P2Y13-R) is a purinergic receptor expressed in WAT, we investigated its role in adipocyte lipolysis and its effect on IR and metabolic dysfunction-associated steatotic liver disease (MASLD). In humans, mRNA expression of P2Y13-R in WAT was negatively correlated to adipocyte lipolysis. In mice, adipocytes lacking P2Y13-R displayed higher intracellular cAMP levels, indicating impaired Gi signaling. Consistently, the absence of P2Y13-R was linked to increased lipolysis in adipocytes and WAT explants via hormone-sensitive lipase activation. Metabolic studies indicated that mice lacking P2Y13-R showed a greater susceptibility to diet-induced IR, systemic inflammation, and MASLD compared with their wild-type counterparts. Assays conducted on precision-cut liver slices exposed to WAT conditioned medium and on liver-specific P2Y13-R-knockdown mice suggested that P2Y13-R activity in WAT protects from hepatic steatosis, independently of liver P2Y13-R expression. In conclusion, our findings support the idea that targeting adipose P2Y13-R activity may represent a pharmacological strategy to prevent obesity-associated disorders, including type 2 diabetes and MASLD.


Subject(s)
Adipocytes , Adipose Tissue, White , Fatty Liver , Insulin Resistance , Lipolysis , Receptors, Purinergic P2 , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue, White/metabolism , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/deficiency
2.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35041621

ABSTRACT

Impaired glucose metabolism is observed in obesity and type 2 diabetes. Glucose controls gene expression through the transcription factor ChREBP in liver and adipose tissues. Mlxipl encodes 2 isoforms: ChREBPα, the full-length form (translocation into the nucleus is under the control of glucose), and ChREBPß, a constitutively nuclear shorter form. ChREBPß gene expression in white adipose tissue is strongly associated with insulin sensitivity. Here, we investigated the consequences of ChREBPß deficiency on insulin action and energy balance. ChREBPß-deficient male and female C57BL6/J and FVB/N mice were produced using CRISPR/Cas9-mediated gene editing. Unlike global ChREBP deficiency, lack of ChREBPß showed modest effects on gene expression in adipose tissues and the liver, with variations chiefly observed in brown adipose tissue. In mice fed chow and 2 types of high-fat diets, lack of ChREBPß had moderate effects on body composition and insulin sensitivity. At thermoneutrality, ChREBPß deficiency did not prevent the whitening of brown adipose tissue previously reported in total ChREBP-KO mice. These findings revealed that ChREBPß is dispensable for metabolic adaptations to nutritional and thermic challenges.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Blood Glucose/metabolism , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/genetics , Energy Metabolism/genetics , Gene Expression Regulation , RNA/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Male , Mice , Mice, Inbred C57BL
3.
Am J Physiol Endocrinol Metab ; 321(3): E325-E337, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34250814

ABSTRACT

The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.


Subject(s)
Adaptation, Physiological , Cardiovascular System/metabolism , Life Style , Obesity/metabolism , Weight Reduction Programs , Adult , Age Factors , Aged , Body Composition , Humans , Male , Middle Aged
4.
Adv Sci (Weinh) ; 8(16): e2100106, 2021 08.
Article in English | MEDLINE | ID: mdl-34165908

ABSTRACT

Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis. Here, a scaffold-free versatile 3D adipocyte culture platform with chemically defined conditions is presented in which primary human preadipocytes accurately recapitulate adipogenesis. Following differentiation, multi-omics profiling and functional tests demonstrate that 3D adipocyte cultures feature mature molecular and cellular phenotypes similar to freshly isolated mature adipocytes. Spheroids exhibit physiologically relevant gene expression signatures with 4704 differentially expressed genes compared to conventional 2D cultures (false discovery rate < 0.05), including the concerted expression of factors shaping the adipogenic niche. Furthermore, lipid profiles of >1000 lipid species closely resemble patterns of the corresponding isogenic mature adipocytes in vivo (R2 = 0.97). Integration of multi-omics signatures with analyses of the activity profiles of 503 transcription factors using global promoter motif inference reveals a complex signaling network, involving YAP, Hedgehog, and TGFß signaling, that links the organotypic microenvironment in 3D culture to the activation and reinforcement of PPARγ and CEBP activity resulting in improved adipogenesis.


Subject(s)
Adipogenesis/physiology , Adipose Tissue/pathology , Cell Culture Techniques/methods , Cells, Cultured , Humans , Signal Transduction/physiology
5.
Cell Rep ; 32(8): 108075, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32846132

ABSTRACT

Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.


Subject(s)
Atrial Natriuretic Factor/metabolism , Thermogenesis/physiology , Animals , Humans , Male , Mice , Mice, Knockout
6.
Int J Obes (Lond) ; 43(7): 1485-1490, 2019 07.
Article in English | MEDLINE | ID: mdl-30482933

ABSTRACT

MicroRNAs have been involved in insulin resistance (IR). As the mechanism whereby niacin, an anti-dyslipidemic agent, leads to IR remains elusive, we sought to identify differentially expressed microRNAs in adipose tissue (AT) of individuals receiving niacin and to explore the link between microRNAs, niacin and IR in human adipocytes.In a double-blind controlled study, 22 obese men received extended-release niacin or placebo over 8 weeks. Bioclinical data and subcutaneous AT biopsies were obtained before and after treatment. AT microRNA expression profiles were determined using RTqPCR for 758 human-specific microRNAs. hMADS adipocytes were treated with niacin, or acipimox (a niacin-like drug without effect on IR), or transfected with miR-502-3p. Glucose uptake and Western blotting were performed.In obese men, insulin sensitivity decreased after niacin treatment. In AT, the expression of 6 microRNAs including miR-502-3p was up-regulated. Treatment of hMADS adipocytes with niacin specifically increased miR-502-3p expression. Acipimox had no effect. Overexpression of miR-502-3p in adipocytes led to reduced insulin-induced glucose uptake and lower insulin-stimulated AKT phosphorylation.Long term niacin treatment altered microRNA expression levels in human AT. Increased miR-502-3p expression may play a role in the mediation of IR due to niacin in adipocytes.The study is registered in Clinical Trials NCT01083329 and EudraCT 2009-012124-85.


Subject(s)
Adipocytes/drug effects , Insulin Resistance/genetics , MicroRNAs/genetics , Niacin/pharmacology , Obesity/metabolism , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Adult , Cells, Cultured , Double-Blind Method , Humans , Male , MicroRNAs/metabolism , Middle Aged , Transcriptome/drug effects , Transcriptome/genetics , Young Adult
7.
J Clin Endocrinol Metab ; 102(8): 2751-2761, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28482007

ABSTRACT

Context: Although calorie restriction has proven beneficial for weight loss, long-term weight control is variable between individuals. Objective: To identify biomarkers of successful weight control during a dietary intervention (DI). Design, Setting, and Participants: Adipose tissue (AT) transcriptomes were compared between 21 obese individuals who either maintained weight loss or regained weight during the DI. Results were validated on 310 individuals from the same study using quantitative reverse transcription polymerase chain reaction and protein levels of potential circulating biomarkers measured by enzyme-linked immunosorbent assay. Intervention: Individuals underwent 8 weeks of low-calorie diet, then 6 months of ad libitum diet. Outcome Measure: Weight changes at the end of the DI. Results: We evaluated six genes that had altered expression during DI, encode secreted proteins, and have not previously been implicated in weight control (EGFL6, FSTL3, CRYAB, TNMD, SPARC, IGFBP3), as well as genes for which baseline expression differed between those with good and poor weight control (ASPN, USP53). Changes in plasma concentrations of EGFL6, FSTL3, and CRYAB mirrored AT messenger RNA expression; all decreased during DI in individuals with good weight control. ASPN and USP53 had higher baseline expression in individuals who went on to have good weight control. Expression quantitative trait loci analysis found polymorphisms associated with expression levels of USP53 in AT. A regulatory network was identified in which transforming growth factor ß1 (TGF-ß1) was responsible for downregulation of certain genes during DI in good controllers. Interestingly, ASPN is a TGF-ß1 inhibitor. Conclusions: We found circulating biomarkers associated with weight control that could influence weight management strategies and genes that may be prognostic for successful weight control.


Subject(s)
Caloric Restriction , Obesity/diet therapy , RNA, Messenger/metabolism , Subcutaneous Fat/metabolism , Adult , Biomarkers/metabolism , Calcium-Binding Proteins , Cell Adhesion Molecules , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Humans , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 3/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microarray Analysis , Middle Aged , Obesity/genetics , Obesity/metabolism , Osteonectin/genetics , Osteonectin/metabolism , Polymorphism, Genetic , Quantitative Trait Loci , Real-Time Polymerase Chain Reaction , Transforming Growth Factor beta1/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , alpha-Crystallin B Chain/genetics , alpha-Crystallin B Chain/metabolism
8.
Diabetologia ; 58(11): 2627-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26245186

ABSTRACT

AIMS/HYPOTHESIS: Activation of macrophages by fatty acids (FAs) is a potential mechanism linking obesity to adipose tissue (AT) inflammation and insulin resistance. Here, we investigated the effects of FAs released during adipocyte lipolysis on AT macrophages (ATMs). METHODS: Human THP-1 macrophages were treated with media from human multipotent adipose-derived stem (hMADS) adipocytes stimulated with lipolytic drugs. Macrophages were also treated with mixtures of FAs and an inhibitor of Toll-like receptor 4, since this receptor is activated by saturated FAs. Levels of mRNA and the secretion of inflammation-related molecules were measured in macrophages. FA composition was determined in adipocytes, conditioned media and macrophages. The effect of chronic inhibition or acute activation of fat cell lipolysis on ATM response was investigated in vivo in mice. RESULTS: Whereas palmitic acid alone activates THP-1, conditioned media from hMADS adipocyte lipolysis had no effect on IL, chemokine and cytokine gene expression, and secretion by macrophages. Mixtures of FAs representing de novo lipogenesis or habitual dietary conditions also had no effect. FAs derived from adipocyte lipolysis were taken up by macrophages and stored as triacylglycerol droplets. In vivo, chronic treatment with an antilipolytic drug did not modify gene expression and number of ATMs in mice with intact or defective Tlr4. Stimulation of adipocyte lipolysis increased storage of neutral lipids by macrophages without change in number and phenotype. CONCLUSIONS/INTERPRETATION: Our data suggest that adipocyte lipolysis does not activate inflammatory pathways in ATMs, which instead may act as scavengers of FAs.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Fatty Acids/metabolism , Lipolysis/physiology , Macrophages/metabolism , Triglycerides/metabolism , Adipocytes/cytology , Adipose Tissue/cytology , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Cell Line , Dioxoles/pharmacology , Fatty Acids/pharmacology , Humans , Inflammation/metabolism , Macrophages/cytology , Macrophages/drug effects , Male , Mice , Mice, Knockout , Palmitic Acid/pharmacology , Stem Cells/cytology , Stem Cells/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
9.
Diabetes ; 64(12): 4033-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26253614

ABSTRACT

Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Glucose Intolerance/etiology , Insulin Resistance , Muscle, Skeletal/metabolism , Obesity/physiopathology , Receptors, Atrial Natriuretic Factor/metabolism , Signal Transduction , Adult , Animals , Body Mass Index , Cells, Cultured , Diabetes Mellitus, Type 2/prevention & control , Diet, Reducing , Disease Progression , Glucose Intolerance/prevention & control , Humans , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Middle Aged , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Obesity/diet therapy , Obesity/metabolism , Obesity/pathology , Random Allocation , Receptors, Atrial Natriuretic Factor/agonists , Receptors, Atrial Natriuretic Factor/genetics , Specific Pathogen-Free Organisms , Weight Loss
10.
Proc Natl Acad Sci U S A ; 111(42): E4494-503, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288766

ABSTRACT

LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders.


Subject(s)
Diet , LEOPARD Syndrome/genetics , Obesity/prevention & control , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Thinness/genetics , Adipocytes/cytology , Adipose Tissue/metabolism , Adiposity , Animals , Body Composition , Cell Differentiation , Disease Models, Animal , Energy Metabolism , Insulin/metabolism , Lentivirus/metabolism , Lipolysis , MAP Kinase Kinase Kinase 1/antagonists & inhibitors , Male , Mice , Mice, Transgenic , Mutation , Phenotype , Recombination, Genetic
11.
Cell Rep ; 7(4): 1116-29, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24794440

ABSTRACT

Adipose tissue fibrosis development blocks adipocyte hypertrophy and favors ectopic lipid accumulation. Here, we show that adipose tissue fibrosis is associated with obesity and insulin resistance in humans and mice. Kinetic studies in C3H mice fed a high-fat diet show activation of macrophages and progression of fibrosis along with adipocyte metabolic dysfunction and death. Adipose tissue fibrosis is attenuated by macrophage depletion. Impairment of Toll-like receptor 4 signaling protects mice from obesity-induced fibrosis. The presence of a functional Toll-like receptor 4 on adipose tissue hematopoietic cells is necessary for the initiation of adipose tissue fibrosis. Continuous low-dose infusion of the Toll-like receptor 4 ligand, lipopolysaccharide, promotes adipose tissue fibrosis. Ex vivo, lipopolysaccharide-mediated induction of fibrosis is prevented by antibodies against the profibrotic factor TGFß1. Together, these results indicate that obesity and endotoxemia favor the development of adipose tissue fibrosis, a condition associated with insulin resistance, through immune cell Toll-like receptor 4.


Subject(s)
Adipose Tissue/pathology , Endotoxemia/metabolism , Obesity/metabolism , Toll-Like Receptor 4/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Endotoxemia/pathology , Fibrosis , Humans , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance/physiology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C3H , Obesity/pathology , Signal Transduction , Toll-Like Receptor 4/genetics
12.
Endocrinology ; 154(4): 1444-53, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23471217

ABSTRACT

Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice.


Subject(s)
Diet, High-Fat , Insulin Resistance , Lipase/metabolism , Muscle, Skeletal/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Animals , Carrier Proteins/metabolism , Diglycerides/metabolism , Glucose/metabolism , Glucose Tolerance Test , Insulin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C3H , Mice, Knockout , Muscle Proteins/metabolism , Perilipin-2 , Perilipin-3 , Phosphorylation , Weight Gain
13.
PLoS Biol ; 11(2): e1001485, 2013.
Article in English | MEDLINE | ID: mdl-23431266

ABSTRACT

When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.


Subject(s)
Adipose Tissue, White/drug effects , Adipose Tissue/metabolism , Lipid Metabolism/drug effects , Adipose Tissue/drug effects , Adipose Tissue, White/metabolism , Adolescent , Adult , Aged , Animals , Glucose , Humans , Lipolysis/drug effects , Male , Mice , Middle Aged , Niacin/pharmacology , Sterol Esterase/metabolism , Young Adult
14.
Obes Facts ; 4(2): 121-9, 2011.
Article in English | MEDLINE | ID: mdl-21577019

ABSTRACT

BACKGROUND: Gluteofemoral adipose tissue areas are known to be poorly metabolically reactive. Mechanical massage has previously been reported to show morphological and functional impact on this tissue. The present study was carried out to delve more deeply into the mechanistic considerations regarding the incidence of a mechanical massage technique on gene expression profile and ß-adrenergic-mediated lipid mobilization in female femoral adipose tissue. METHODS: Twelve premenopausal healthy women were included and received 12 sessions of calibrated mechanical massage (Endermologie®). Total RNA was extracted from femoral adipose tissue biopsies for gene expression studies. Microdialysis was carried out in the femoral adipose tissue in order to assess lipolytic responsiveness (via glycerol determination) and changes in local blood flow following perfusion of a lipolytic agent, isoproterenol. Evaluations were performed before and after the 6-week experimental period. RESULTS: Mechanical massage initiated important modifications in gene expression profile. The lipid-mobilizing effect of isoproterenol was enhanced after the experimental period. Basal local blood flow and isoproterenol-induced vasodilatation were also improved. CONCLUSION: The protocol of mechanical massage used in the study promoted noticeable changes in the expression of genes involved in metabolic pathways. The lipolytic and local adipose tissue blood flow responses initiated by isoproterenol were significantly enhanced.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Profiling , Lipid Mobilization , Massage , Overweight/metabolism , Adipose Tissue/blood supply , Adult , Biopsy , Buttocks/blood supply , Dialysis , Female , Humans , Isoproterenol/pharmacology , Leg/blood supply , Overweight/genetics , RNA/metabolism , Regional Blood Flow/drug effects , Treatment Outcome , Vasodilation/drug effects
15.
Diabetes ; 59(11): 2755-63, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20713685

ABSTRACT

OBJECTIVE: Regional differences among adipose depots in capacities for fatty acid storage, susceptibility to hypoxia, and inflammation likely contribute to complications of obesity. We defined the properties of endothelial cells (EC) isolated from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) biopsied in parallel from obese subjects. RESEARCH DESIGN AND METHODS: The architecture and properties of the fat tissue capillary network were analyzed using immunohistochemistry and flow cytometry. CD34(+)/CD31(+) EC were isolated by immunoselection/depletion. Expression of chemokines, adhesion molecules, angiogenic factor receptors, as well as lipogenic and senescence-related genes were assayed by real-time PCR. Fat cell size and expression of hypoxia-dependent genes were determined in adipocytes from both fat depots. RESULTS: Hypoxia-related genes were more highly expressed in VAT than SAT adipocytes. VAT adipocytes were smaller than SAT adipocytes. Vascular density and EC abundance were higher in VAT. VAT-EC exhibited a marked angiogenic and inflammatory state with decreased expression of metabolism-related genes, including endothelial lipase, GPIHBP1, and PPAR gamma. VAT-EC had enhanced expression of the cellular senescence markers, IGFBP3 and γ-H2AX, and decreased expression of SIRT1. Exposure to VAT adipocytes caused more EC senescence-associated ß-galactosidase activity than SAT adipocytes, an effect reduced in the presence of vascular endothelial growth factor A (VEGFA) neutralizing antibodies. CONCLUSIONS: VAT-EC exhibit a more marked angiogenic and proinflammatory state than SAT-EC. This phenotype may be related to premature EC senescence. VAT-EC may contribute to hypoxia and inflammation in VAT.


Subject(s)
Adipose Tissue/metabolism , Adipose Tissue/pathology , Cellular Senescence/physiology , Obesity/metabolism , Obesity/pathology , Adipocytes/cytology , Adipocytes/metabolism , Adipocytes/pathology , Adult , Biopsy , Body Mass Index , Chemokine CCL20/genetics , Female , Gene Expression Regulation , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Hypercholesterolemia/pathology , Hypertension/genetics , Hypertension/metabolism , Hypertension/pathology , Immunohistochemistry/methods , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Male , Middle Aged , Obesity/genetics , Reference Values , Subcutaneous Fat/metabolism , Subcutaneous Fat/pathology
16.
Am J Physiol Endocrinol Metab ; 295(2): E505-13, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18559985

ABSTRACT

Involvement of sympathetic nervous system and natriuretic peptides in the control of exercise-induced lipid mobilization was compared in overweight and lean men. Lipid mobilization was determined using local microdialysis during exercise. Subjects performed 35-min exercise bouts at 60% of their maximal oxygen consumption under placebo or after oral tertatolol [a beta-adrenergic receptor (AR) antagonist]. Under placebo, exercise increased dialysate glycerol concentration (DGC) in both groups. Phentolamine (alpha-AR antagonist) potentiated exercise-induced lipolysis in overweight but not in lean subjects; the alpha(2)-antilipolytic effect was only functional in overweight men. After tertatolol administration, the DGC increased similarly during exercise no matter which was used probe in both groups. Compared with the control probe under placebo, lipolysis was reduced in lean but not in overweight men treated with the beta-AR blocker. Tertatolol reduced plasma nonesterified fatty acids and insulin concentration in both groups at rest. Under placebo or tertatolol, the exercise-induced changes in plasma nonesterified fatty acids, glycerol, and insulin concentrations were similar in both groups. Exercise promoted a higher increase in catecholamine and ANP plasma levels after tertatolol administration. In conclusion, the major finding of our study is that in overweight men, in addition to an increased alpha(2)-antilipolytic effect, the lipid mobilization in subcutaneous adipose tissue that persists during exercise under beta-blockade is not dependent on catecholamine action. On the basis of correlation findings, it seems to be related to a concomitant exercise-induced rise in plasma ANP when exercise is performed under tertatolol intake and a decrease in plasma insulin.


Subject(s)
Atrial Natriuretic Factor/metabolism , Exercise/physiology , Lipid Mobilization/physiology , Overweight/metabolism , Subcutaneous Fat/metabolism , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Adult , Blood Glucose/metabolism , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Glycerol/blood , Glycerol/metabolism , Humans , Insulin/blood , Insulin/metabolism , Lipid Mobilization/drug effects , Male , Phentolamine/pharmacology , Propanolamines/pharmacology , Subcutaneous Fat/drug effects , Thiophenes/pharmacology
17.
Obesity (Silver Spring) ; 15(9): 2245-55, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17890493

ABSTRACT

OBJECTIVE: To explore sex differences in the regulation of lipolysis during exercise, the lipid-mobilizing mechanisms in the subcutaneous adipose tissue (SCAT) of overweight men and women were studied using microdialysis. RESEARCH METHODS AND PROCEDURES: Subjects matched for age, BMI, and physical fitness performed two 30-minute exercise bouts in a randomized fashion: the first test at 30% and 50% of their individual maximal oxygen uptake (Vo(2max)) and the second test at 30% and 70% of their Vo(2max). RESULTS: In both groups, an exercise-dependent increment in extracellular glycerol concentration (EGC) was observed. Whatever the intensity, phentolamine [alpha-adrenergic receptor (AR) antagonist] added to a dialysis probe potentiated exercise-induced lipolysis only in men. In a probe containing phentolamine plus propranolol (beta-AR antagonist), no changes in EGC occurred when compared with the control probe when exercise was performed at 30% and 50% Vo(2max). A significant reduction of EGC (when compared with the control probe) was observed in women at 70% Vo(2max). At each exercise power, the plasma non-esterified fatty acid and glycerol concentrations were higher in women. Exercise-induced increase in plasma catecholamine levels was lower in women compared with men. Plasma insulin decreased and atrial natriuretic peptide increased similarly in both groups. DISCUSSION: Overweight women mobilize more lipids (assessed by glycerol) than men during exercise. alpha(2)-Anti-lipolytic effect was functional in SCAT of men only. The major finding is that during low-to-moderate exercise periods (30% and 50% Vo(2max)), lipid mobilization in SCAT relies less on catecholamine-dependent stimulation of beta-ARs than on an increase in plasma atrial natriuretic peptide concentrations and the decrease in plasma insulin.


Subject(s)
Exercise , Overweight/pathology , Subcutaneous Fat/metabolism , Adipose Tissue/metabolism , Body Mass Index , Catecholamines/metabolism , Female , Glycerol/metabolism , Humans , Insulin/metabolism , Leptin/metabolism , Lipolysis , Male , Microdialysis , Overweight/diagnosis , Oxygen/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Sex Factors
18.
Am J Physiol Regul Integr Comp Physiol ; 293(2): R612-7, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17553844

ABSTRACT

Head-down bed rest (HDBR) increases plasma levels of atrial natriuretic peptide (ANP) and decreases norepinephrine levels. We previously demonstrated that ANP promotes lipid mobilization and utilization, an effect independent of sympathetic nervous system activation, when infused into lean healthy men at pharmacological doses. The purpose of the present study was to demonstrate that a physiological increase in ANP contributes to lipid mobilization and oxidation in healthy young men. Eight men were positioned for 4 h in a sitting (control) or in a HDBR position. Indexes of lipid mobilization and hormonal changes were measured in plasma. Extracellular glycerol, an index of lipolysis, was determined in subcutaneous adipose tissue (SCAT) with a microdialysis technique. A twofold increase in plasma ANP concentration was observed after 60 min of HDBR, and a plateau was maintained thereafter. Plasma norepinephrine decreased by 30-40% during HDBR, while plasma insulin and glucose levels did not change. The level of plasma nonesterified fatty acids was higher during HDBR. SCAT lipolysis, as reflected by interstitial glycerol, as well as interstitial cGMP, the second messenger of the ANP pathway, increased during HDBR. This was associated with an increase in blood flow observed throughout HDBR. Significant changes in respiratory exchange ratio and percent use of lipid and carbohydrate were seen only after 3 h of HDBR. Thus the proportion of lipid oxidized increased by 40% after 3 h of HDBR. The rise in plasma ANP during HDBR was associated with increased lipolysis in SCAT and whole body lipid oxidation. In this physiological setting, independent of increasing catecholamines, our study suggests that ANP contributes to lipid mobilization and oxidation in healthy young men.


Subject(s)
Atrial Natriuretic Factor/blood , Fatty Acids, Nonesterified/blood , Head-Down Tilt/physiology , Lipolysis/physiology , Rest/physiology , Adult , Blood Glucose/metabolism , Cyclic GMP/metabolism , Dietary Carbohydrates/pharmacokinetics , Dietary Fats/pharmacokinetics , Extracellular Space/metabolism , Glycerol/blood , Heart Rate , Humans , Insulin/blood , Male , Microdialysis , Norepinephrine/blood , Oxidation-Reduction , Posture/physiology , Pulmonary Gas Exchange , Regional Blood Flow , Subcutaneous Fat/metabolism
19.
Aviat Space Environ Med ; 73(8): 735-42, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12182212

ABSTRACT

BACKGROUND: Simulated microgravity produces sustained inhibition of sympathoneural release, turnover, and synthesis of norepinephrine (NE) and hypersensitization of beta-adrenergic pathways. These changes may explain the orthostatic intolerance experienced by astronauts returning from spaceflights. HYPOTHESIS: Chronic administration of yohimbine would prevent the increase of beta-adrenergic hypersensitivity to epinephrine (Epi) induced by simulated microgravity. METHODS: Eight healthy young subjects received 8 mg of yohimbine (an antagonist of alpha2adrenoceptors) orally twice a day during the simulated microgravity achieved through -6 degrees head-down bed rest (HDBR). The catecholamine-induced lipolysis was studied on isolated fat cells from subcutaneous adipose tissue before HDBR and on the fifth day of HDBR. Epi was infused at three graded rates (0.01, 0.02, and 0.03 microg x kg(-1) x min(-1) for 40 min each) before and at the end of the HDBR period. The effects of Epi on the sympathetic nervous system (SNS) activity-assessed by plasma NE levels and spectral analysis of systolic BP and heart rate variability-and on plasma levels of glycerol, non-esterified fatty acids, glucose, and insulin and on energy expenditure were evaluated. RESULTS: Under yohimbine treatment, HDBR failed to modify urinary NE excretion and spectral variability of systolic BP in the mid-frequency range. The beta- and alpha-adrenergic sensitivity of fat cells were not modified by HDBR nor were plasma NE levels and spectral variability of systolic BP induced by Epi infusion. No alteration of Epi-induced changes in heart rate and systolic and diastolic BPs were observed after HDBR. Epi-induced increases in plasma glucose, insulin, glycerol, and non-esterified fatty acid levels as well as energy expenditure were also unmodified by HDBR. Only the Epi-induced plasma lactate level was increased by HDBR. CONCLUSION: Our data suggest that the increase in the effects of Epi induced during microgravity could be attenuated by chronic administration of yohimbine. An explanation for this effect could be SNS activation brought about by the alpha2-adrenoceptor antagonist properties of yohimbine.


Subject(s)
Adrenergic alpha-Antagonists/therapeutic use , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/prevention & control , Epinephrine/physiology , Hypotension, Orthostatic/etiology , Hypotension, Orthostatic/prevention & control , Weightlessness Simulation/adverse effects , Yohimbine/therapeutic use , Absorptiometry, Photon , Administration, Oral , Adrenergic alpha-Antagonists/pharmacology , Adult , Aerospace Medicine , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/metabolism , Autonomic Nervous System Diseases/physiopathology , Blood Pressure , Body Composition , Energy Metabolism , Epinephrine/blood , Epinephrine/urine , Head-Down Tilt , Heart Rate , Humans , Hypotension, Orthostatic/diagnosis , Hypotension, Orthostatic/metabolism , Hypotension, Orthostatic/physiopathology , Lipolysis , Male , Time Factors , Weightlessness Simulation/methods , Yohimbine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...