Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Behav ; 260: 114070, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36574940

ABSTRACT

Excessive stress can precipitate depression and anxiety diseases, and damage gastrointestinal functionality and microbiota changes, favoring the development of functional gastrointestinal disorders (FGIDs) - defined by dysregulation in the brain-gut interaction. Therefore, the present study investigated if Emotional-Single Prolonged Stress (E-SPS) induces depressive/anxiety-like phenotype and gut dysfunction in adult Swiss male mice. For this, mice of the E-SPS group were subjected to three stressors sequential exposure: immobilization, swimming, and odor of the predator for 7 days (incubation period). Next, animals performed behavior tests and 24 h later, samples of feces, blood, and colon tissue were collected. E-SPS increased the plasma corticosterone levels, immobility time in the tail suspension and forced swim test, decreased the grooming time in the splash test, OAT%, and OAE% in the elevated plus-maze test, as well as increased anxiety index. Mice of E-SPS had increased % of intestinal transit rate, % of fecal moisture content, and fecal pellets number, and decreased Claudin1 content in the colon. E-SPS decreased the relative abundance of Bacteroidetes phylum, Bacteroidia class, Bacteroidales order, Muribaculaceae and Porphyromonadaceae family, Muribaculum, and Duncaniella genus. However, E-SPS increased Firmicutes and Actinobacteria phylum, Coriobacteriales order, and the ratio of Firmicutes/Bacteroidetes, and demonstrated Mucispirillum genus presence. The present study showed that E-SPS induced depressive/anxiety-like phenotype, predominant diarrhea gut dysfunction, and modulated the gut bacterial microbiota profile in male adult Swiss mice. E-SPS might be a promising model for future studies on the brain-gut interaction and the development of FGIDs with psychological comorbidities.


Subject(s)
Brain , Microbiota , Animals , Male , Mice , Anxiety , Anxiety Disorders , Bacteria/genetics , Stress, Psychological/psychology , Brain-Gut Axis
2.
Can J Physiol Pharmacol ; 100(6): 500-508, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35395160

ABSTRACT

Dexamethasone is a synthetic glucocorticoid that has been associated with oxidative stress in central and peripheral tissues. p-Chloro-diphenyl diselenide ((p-ClPhSe)2) is an antioxidant organoselenium compound. The present study evaluated whether nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap-1) signaling contributes to the (p-ClPhSe)2 antioxidant effects in the kidney of mice exposed to dexamethasone. Adult Swiss mice received dexamethasone (intraperitoneal) at a dose of 2 mg/kg or its vehicle for 21 days. After that, mice were treated with (p-ClPhSe)2 (intragastric) (1, 5, or 10 mg/kg) for 7 days. Samples of kidneys were collected for biochemical assays. (p-ClPhSe)2 at a dose of 1 mg/kg reversed the renal reactive oxygen species (ROS) and carbonyl protein (CP) levels increased by dexamethasone. (p-ClPhSe)2 at doses of 5 and 10 mg/kg was effective against the increase of thiobarbituric acid reactive substances, ROS, and CP, as well as the decrease of δ-aminolevulinic acid dehydratase activity and nonprotein sulfhydryl levels induced by dexamethasone. At 5 mg/kg, (p-ClPhSe)2 reduced the renal levels of 4-OH-2-HNE and heme oxygenase (HO-1), as well as modulated the Nrf2/Keap-1 signaling in mice exposed to dexamethasone. The present findings revealed that (p-ClPhSe)2 antioxidant effects were associated with the modulation of Nrf2/Keap-1 signaling pathway in the kidney of mice exposed to dexamethasone.


Subject(s)
Antioxidants , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Organoselenium Compounds , Oxidative Stress , Animals , Antioxidants/pharmacology , Dexamethasone/adverse effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Organoselenium Compounds/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction
3.
Can J Physiol Pharmacol ; 99(9): 943-951, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33861646

ABSTRACT

Streptozotocin (STZ) is a substance used experimentally to induce a diabetes model, a metabolic disease associated with oxidative tissue damage. This study evaluated if 4-4'-dichloro-diphenyl diselenide (p-ClPhSe)2 modulates oxidative stress in peripheral tissues of diabetic mice. Male Swiss mice received a single STZ injection (i.p.) at a dose of 200 mg/kg or its vehicle and were treated with (p-ClPhSe)2 (7 days, 5 mg/kg) or metformin (200 mg/kg, twice per day). After, the mice were euthanized to collect liver, kidney, and skeletal muscle samples. In the liver, (p-ClPhSe)2 reduced thiobarbituric acid reactive substances (TBARS) and protein carbonyl levels and normalized the superoxide dismutase activity in STZ-treated mice. In the kidney, (p-ClPhSe)2 reversed the increase in the reactive species levels but not the catalase (CAT) activity reduction in STZ-treated mice. There was no evidence of oxidative damage in the skeletal muscle of STZ-treated mice, but an increase in the CAT activity and a reduction in non-protein thiol levels were found. (p-ClPhSe)2 did not reverse a decrease in hepatic and renal δ-aminolevulinic acid dehydratase activity in STZ-treated mice. The results show that the liver and kidney of STZ-treated mice were more susceptible to oxidative stress. This study reveals that (p-ClPhSe)2 modulated oxidative stress, which differently affected peripheral tissues of diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Animals , Catalase/metabolism , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Liver/metabolism , Male , Mice , Porphobilinogen Synthase/metabolism , Streptozocin
4.
Psychopharmacology (Berl) ; 237(2): 363-374, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31828396

ABSTRACT

RATIONALE: The association between depression and diabetes has been recognized for many years, but the nature of this relationship remains uncertain. OBJECTIVES: This study investigated the antidepressant-like effect of (p-ClPhSe)2 on mice made diabetic by streptozotocin (STZ) and the contribution of cerebral cortical Keap1/Nrf2/HO-1 signaling pathway for this effect. METHODS: Male adult Swiss mice received streptozotocin (STZ, 200 mg/kg, i.p.) to induce diabetes (glycemia ≥ 200 mg/dl) or citrate buffer (5 ml/kg, control group). The mice were treated with (p-ClPhSe)2 at the dose of 5 mg/kg, i.g., for 7 days. Mice performed behavior tests, tail suspension (TST), and forced swimming tests (FST), to evaluate depressive-like phenotype. RESULTS: Diabetic mice showed an increase in immobility time in the TST and FST when compared to the control group. The protein contents of Keap1/Nrf2/HO-1 pathway were decreased in the cerebral cortex of diabetic mice. Diabetic mice had an increase in the relative adrenal weight and a decrease in the protein content of glucocorticoid receptor. The levels of TBARS and RS and SOD activity were found altered in the cerebral cortex of diabetic mice. The number of FJC-positive cells was increased in the cerebral cortex of diabetic mice. Treatment with (p-ClPhSe)2 was effective against depressive-like phenotype, oxidative stress, and FJC-positive cells of diabetic mice. (p-ClPhSe)2 did not reverse the parameters of HPA axis evaluated in this study. (p-ClPhSe)2 modulated the cerebral cortical Keap1/Nrf2/HO-1 pathway in diabetic mice. CONCLUSIONS: This study demonstrates the contribution of cerebral cortical Keap1/Nrf2/HO-1 pathway in the (p-ClPhSe)2 antidepressant-like action in diabetic mice.


Subject(s)
Antidepressive Agents/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Heme Oxygenase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Membrane Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Organoselenium Compounds/therapeutic use , Animals , Antidepressive Agents/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Depression/blood , Depression/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Male , Mice , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Streptozocin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...