Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Exp Gerontol ; 186: 112361, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232787

ABSTRACT

We compared the effects of velocity-monitored resistance training with an intra-set velocity loss (i.e., the decrement in repetition velocity over the set) of 10 % vs. 20 % on strength-related outcomes in older adults. We randomly assigned eighteen older adults to a velocity loss group of 10 % (n = 10; 78 ± 12 years) or 20 % (n = 8; 73 ± 10 years) to perform a 10-week training program. The primary outcomes were the one-repetition maximum (1RM) and the average mean velocity against absolute loads associated with loads <60 % 1RM (MVlow) and ≥ 60 % 1RM (MVhigh) in the leg and chest press exercises, assessed at pre-, mid- (week 5), and post-test. Secondary outcomes included handgrip strength, 1-kg medicine ball throw distance, 10-m walking time, and five-repetition sit-to-stand time. No differences between groups were found in any outcome at any time (p > 0.05). Both groups improved the 1RM leg press from pre- to mid- and post-test and the MVlow and MVhigh from pre- to mid-test (p < 0.05). No group improved the 1RM chest press (p > 0.05), but both increased the MVlow from pre- to mid-test (p < 0.05). Furthermore, both groups improved the sit-to-stand time, while only the 20 % velocity loss group significantly improved handgrip strength and 10-m walking time (p < 0.05). The results showed that both velocity losses improved leg press strength and velocity, chest press velocity, and sit-to-stand time in older adults, although a 10 % velocity loss was more efficient as it required less volume (i.e., total repetitions) than 20 %. Nevertheless, the latter seems required to optimize handgrip strength and 10-m walking time in older people.


Subject(s)
Hand Strength , Resistance Training , Humans , Aged , Muscle Strength , Resistance Training/methods , Walking , Weight Lifting , Muscle, Skeletal
2.
PLoS One ; 18(5): e0285386, 2023.
Article in English | MEDLINE | ID: mdl-37141287

ABSTRACT

AIM: This study aimed to i) determine the load-velocity relationship in the seated chest press in older adults, ii) compare the magnitude of the relationship between peak and mean velocity with the relative load, and iii) analyze the differences between sexes in movement velocity for each relative load in the chest press. MATERIAL AND METHODS: Thirty-two older adults (17 women and 15 men; 79.6±7.7 years) performed a chest press progressive loading test up to the one-repetition maximum (1RM). The fastest peak and mean velocity reached with each weight were analyzed. Quadratic equations were developed for both sexes and the effectiveness of the regression model was analyzed through a residual analysis. The equations were cross-validated, considering the holdout method. The independent samples t-test analyzed i) the differences in the magnitude of the relationship between peak and mean velocity with the relative load and ii) the differences between sexes in the peak and mean velocity for each relative load. RESULTS: It was possible to observe very strong quadratic load-velocity relationships in the seated chest press in women (peak velocity: r2 = 0.97, standard error of the estimate (SEE) = 4.5% 1RM; mean velocity: r2 = 0.96, SEE = 5.3% 1RM) and men (peak velocity: r2 = 0.98, SEE = 3.8% 1RM; mean velocity: r2 = 0.98, SEE = 3.8% 1RM) without differences (p>0.05) in the magnitude of the relationship between peak and mean velocity with the relative load. Furthermore, there was no overfitting in the regression models due to the high and positive correlation coefficients (r = 0.98-0.99). Finally, men presented higher (p<0.001) lifting velocities than women in almost all relative loads, except for 95-100% 1RM (p>0.05). CONCLUSION: Measuring repetition velocity during the seated chest press is an objective approach to estimating the relative load in older adults. Furthermore, given the velocity differences between older women and men at submaximal loads, it is recommended to use sex-specific equations to estimate and prescribe the relative loads in older adults.


Subject(s)
Muscle Strength , Resistance Training , Male , Humans , Female , Aged , Resistance Training/methods , Exercise , Weight Lifting , Sitting Position
3.
J Hum Kinet ; 86: 205-215, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37181273

ABSTRACT

This study aimed to analyze the influence of the competitive level and weight class on technical performance and physiological and psychophysiological responses during simulated MMA fights. Twenty MMA male athletes were divided into four groups: heavyweight elite (HWE; n = 6), lightweight elite (LWE; n = 3), heavyweight professional (HWP; n = 4), and lightweight professional (LWP; n = 7). All athletes performed four simulated fights of three 5-min rounds with a 1-min rest interval. Each fight was recorded using a video camera to analyze offensive and defensive actions. Moreover, the following measures were made: heart rate (before and after each round), blood lactate concentration (before and after the fight), readiness state (before each round), and the rate of perceived exertion (RPE) (after each round). The main findings were: i) LWE athletes applied more offensive touches than LWP athletes; ii) HWP athletes presented higher heart rate values than LWP athletes after the first round; however, LWP athletes presented greater heart rate changes than HWP athletes from the first to the second round; iii) no differences existed between groups in blood lactate concentration and readiness state; and iv) HWP and LWP athletes presented higher RPE values than LWE athletes in the first and third rounds; however, LWE athletes presented greater RPE changes than HWE, HWP, and LWP athletes from the first to the second and third rounds. This study shows that LWE athletes apply more offensive touches than LWP athletes during simulated MMA fights. Moreover, lightweight athletes tend to increase their physiological demand as the combat evolves, which is also reflected in their RPE.

4.
Sports Med ; 53(2): 503-518, 2023 02.
Article in English | MEDLINE | ID: mdl-36307745

ABSTRACT

BACKGROUND: Effective manipulation of the acute variables of resistance training is critical to optimizing muscle and functional adaptations in middle-aged and older adults. However, the ideal volume prescription (e.g., number of sets performed per exercise) in middle-aged and older adults remains inconclusive in the literature. OBJECTIVE: The effects of single versus multiple sets per exercise on muscle strength and size, muscle quality, and functional capacity in middle-aged and older adults were compared. Moreover, the effects of single versus multiple sets per exercise on muscular and functional gains were also examined, considering the influence of training duration. METHODS: Randomized controlled trials and non-randomized controlled trials comparing single versus multiple sets per exercise on muscle strength, muscle size, muscle quality, or functional capacity in middle-aged and older adults (aged ≥ 50 years) in the PubMed/MEDLINE, Web of Science, and Scopus databases (01/09/2021, updated on 15/05/2022) were identified. A random-effects meta-analysis was used. RESULTS: Fifteen studies were included (430 participants; 93% women; age 57.9-70.1 years). Multiple sets per exercise produced a greater effect than single sets on lower-limb strength (standardized mean difference [SMD] = 0.29; 95% confidence interval [CI] 0.07-0.51; mean difference [MD] = 1.91 kg; 95% CI 0.50-3.33) and muscle quality (SMD = 0.40; 95% CI 0.05-0.75) gains. There were no differences between single versus multiple sets per exercise for upper-limb strength (SMD = 0.13; 95% CI - 0.14 to 0.40; MD = 0.11 kg; 95% CI - 0.52 to 0.75), muscle size (SMD = 0.15; 95% CI - 0.07 to 0.37), and functional capacity (SMD = 0.01; 95% CI - 0.47 to 0.50) gains. In addition, there were no differences between single versus multiple sets on muscle strength and size gains for training durations ≤ 12 weeks or > 12 weeks. CONCLUSIONS: Multiple sets per exercise produced greater lower-limb strength and muscle quality gains than single sets in middle-aged and older adults, although the magnitude of the difference was small. In contrast, single sets per exercise were sufficient to improve upper-limb strength, muscle size, and functional capacity in these populations. Despite these findings, researchers should conduct future high-quality, pre-registered, and blinded randomized controlled trials to strengthen the scientific evidence on this topic.


Subject(s)
Resistance Training , Middle Aged , Humans , Female , Aged , Male , Muscle Strength/physiology , Exercise , Muscle, Skeletal/physiology , Lower Extremity
5.
Sports (Basel) ; 10(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36548492

ABSTRACT

This study analyzed the acute effects of heavy strength training on mechanical, hemodynamic, metabolic, and psychophysiological responses in adult males. Thirteen recreational level males (23.3 ± 1.5 years) randomly performed two heavy strength training sessions (3 sets of 8 repetitions at 80% of one repetition maximum [1RM]) using the bench press (HST-BP) or full squat (HST-FS)). The repetition velocity was recorded in both sessions. Moreover, before and after the sessions, the velocity attained against the ~1.00 m·s−1 load (V1Load) in the HST-BP, countermovement jump (CMJ) height in the HST-FS, blood pressure, heart rate, blood lactate, and psychophysiological responses (OMNI Perceived Exertion Scale for Resistance Exercise) were measured. There were differences between exercises in the number of repetitions performed in the first and third sets (both <8 repetitions). The velocity loss was higher in the HST-BP than in the HST-FS (50.8 ± 10.0% vs. 30.7 ± 9.5%; p < 0.001). However, the mechanical fatigue (V1Load vs. CMJ height) and the psychophysiological response did not differ between sessions (p > 0.05). The HST-FS caused higher blood pressure and heart rate responses than the HST-BP (p < 0.001 and p = 0.02, respectively) and greater blood lactate changes from pre-training to post-set 1 (p < 0.05). These results showed that the number of maximal repetitions performed in both sessions was lower than the target number and decreased across sets. Moreover, the HST-BP caused a higher velocity loss than the HST-FS. Finally, the HST-FS elicited higher hemodynamic and metabolic demand than the HST-BP.

6.
J Hum Kinet ; 84: 184-194, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36457472

ABSTRACT

In this study, we aimed to analyze (i) the strength and power changes after resistance training (RT) in elite futsal players, and (ii) the associations between the session rate of perceived exertion (sRPE) and perceived total quality recovery (TQR), and the sRPE and TQR with the volume load of the RT program. Ten elite futsal players (24.8 ± 5.4 years; 76.2 ± 7.1 kg; 1.77 ± 0.05 m) performed an in-season 8-week RT program twice per week. RT consisted of 2-3 sets x 3-6 reps at 45-65% of one-repetition maximum (1RM) with maximal velocities in the full squat and complementary exercises with the same volume. We assessed the TQR before every session, while the sRPE was calculated after each RT session. One week before and after the intervention, we measured the countermovement jump (CMJ) height, isometric hip adduction strength (IHAS), 1RM, and peak power (PP) in the full squat progressive loading test. After the 8-week training program, there was a significant improvement in most outcomes, yet the gains (%Δ) remained below the minimal detectable change (MDC), except for IHAS (CMJ: p < 0.05, %Δ = 6.7, MDC% = 7.2; IHAS: p < 0.001, %Δ = 19.1, MDC% = 14.6; 1RM: p > 0.05, %Δ = 9.2, MDC% = 21.5; PP: p < 0.05; %Δ = 14.4, MDC% = 22.4). We also found a significant negative correlation between TQR and the sRPE (r = -0.45, p < 0.001). Our data suggest that RT based on low-volume and low-to-moderate loads may not produce a sufficient stimulus to induce meaningful dynamic strength and power gains in elite futsal players, although it improves isometric strength. Furthermore, monitoring TQR before sessions may show coaches how the elite futsal player will perceive the session's intensity.

7.
Front Physiol ; 13: 1007772, 2022.
Article in English | MEDLINE | ID: mdl-36213245

ABSTRACT

Identifying the relative loads (%1RM) that maximize power output (Pmax-load) in resistance exercises can help design interventions to optimize muscle power in older adults. Moreover, examining the maximal mean power (MPmax) and peak power (PPmax) values (Watts) would allow an understanding of their differences and associations with functionality markers in older adults. Therefore, this research aimed to 1) analyze the load-mean and peak power relationships in the leg press and chest press in older adults, 2) examine the differences between mean Pmax-load (MPmax-load) and peak Pmax-load (PPmax-load) within resistance exercises, 3) identify the differences between resistance exercises in MPmax-load and PPmax-load, and 4) explore the associations between MPmax and PPmax in the leg press and chest press with functional capacity indicators. Thirty-two older adults (79.3 ± 7.3 years) performed the following tests: medicine ball throw (MBT), five-repetition sit-to-stand (STS), 10-m walking (10 W), and a progressive loading test in the leg press and chest press. Quadratic regressions analyzed 1) the load-mean and peak power relationships and identified the MPmax-load, MPmax, PPmax-load, and PPmax in both exercises, 2) the associations between MPmax and PPmax in the chest press with MBT, and 3) the associations between MPmax and PPmax in the leg press with STSpower and 10Wvelocity. In the leg press, the MPmax-load was ∼66% 1RM, and the PPmax-load was ∼62% 1RM, both for women and men (p > 0.05). In the chest press, the MPmax-load was ∼62% 1RM, and the PPmax-load was ∼56% 1RM, both for women and men (p > 0.05). There were differences between MPmax-load and PPmax-load within exercises (p < 0.01) and differences between exercises in MPmax-load and PPmax-load (p < 0.01). The MPmax and PPmax in the chest press explained ∼48% and ∼52% of the MBT-1 kg and MBT-3 kg variance, respectively. In the leg press, the MPmax and PPmax explained ∼59% of STSpower variance; however, both variables could not explain the 10Wvelocity performance (r 2 ∼ 0.02). This study shows that the Pmax-load is similar between sexes, is resistance exercise-specific, and varies within exercises depending on the mechanical power variable used in older adults. Furthermore, this research demonstrates the influence of the MBT as an upper-limb power marker in older adults.

8.
Article in English | MEDLINE | ID: mdl-35886591

ABSTRACT

Mixed martial arts (MMA) athletes must achieve high strength levels to face the physical demands of an MMA fight. This study compared MMA athletes' maximal isometric and dynamic strength according to the competitive level and weight class. Twenty-one male MMA athletes were divided into lightweight professional (LWP; n = 9), lightweight elite (LWE; n = 4), heavyweight professional (HWP; n = 4), and heavyweight elite (HWE; n = 4). The handgrip and isometric lumbar strength tests assessed the isometric strength, and the one-repetition maximum (1RM) bench press and 4RM leg press the dynamic strength. Univariate ANOVA showed differences between groups in absolute and relative 1RM bench press and absolute isometric lumbar strength. Post hoc tests showed differences in 1RM bench press between HWE and LWE (117.0 ± 17.8 kg vs. 81.0 ± 10.0 kg) and HWE and LWP athletes (117.0 ± 17.8 kg vs. 76.7 ± 13.7 kg; 1.5 ± 0.2 kg·BW-1 vs. 1.1 ± 0.2 kg·BW-1). In addition, there was a correlation between 1RM bench press and isometric lumbar strength for absolute (r = 0.67) and relative values (r = 0.50). This study showed that the 1RM bench press and isometric lumbar strength were associated and could differentiate MMA athletes according to their competitive level and weight class. Therefore, optimizing the force production in the upper body and lower back seems important in elite and professional MMA athletes.


Subject(s)
Martial Arts , Muscle Strength , Athletes , Hand Strength , Humans , Male , Weight Lifting
9.
J Strength Cond Res ; 36(11): 3200-3208, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-34537803

ABSTRACT

ABSTRACT: Marques, DL, Neiva, HP, Marinho, DA, and Marques, MC. Velocity-monitored resistance training in older adults: the effects of low-velocity loss threshold on strength and functional capacity. J Strength Cond Res 36(11): 3200-3208, 2022-This study analyzed the effects of velocity-monitored resistance training (RT) with a velocity loss of 10% on strength and functional capacity in older adults. Forty-two subjects (79.7 ± 7.1 years) were allocated into an RT group ( n = 21) or a control group (CG; n = 21). Over 10 weeks, the RT group performed 2 sessions per week, whereas the CG maintained their daily routine. During RT sessions, we monitored each repetition's mean velocity in the leg press and chest press exercises at 40-65% of 1 repetition maximum (1RM). The set ended when a velocity loss of 10% was reached. At pretest and post-test, both groups were assessed in the 1RM leg press and chest press, handgrip strength, medicine ball throw (MBT), walking speed (T 10 ), and 5-repetition sit-to-stand (STS). After 10 weeks, the RT group significantly improved the 1RM leg press ( p < 0.001; Hedge's g effect size [ g ] = 0.55), 1RM chest press ( p < 0.001; g = 0.72), MBT 1kg ( p < 0.01; g = 0.26), T 10 ( p < 0.05; g = -0.29), and STS ( p < 0.05; g = -0.29), whereas the CG significantly increased the T 10 ( p < 0.05; g = 0.15). Comparisons between groups at post-test demonstrated significant differences in the 1RM leg press ( p < 0.001; mean difference [MD] = 14.4 kg), 1RM chest press ( p < 0.001; MD = 7.52), MBT 1kg ( p < 0.05; MD = 0.40 m), T 10 ( p < 0.001; MD = -0.60 seconds), and STS ( p < 0.001; MD = -1.85 seconds). Our data demonstrate that velocity-monitored RT with velocity loss of 10% results in a few repetitions per set (leg press: 5.1 ± 1.2; chest press: 3.6 ± 0.9) and significantly improves strength and functional capacity in older adults.


Subject(s)
Resistance Training , Humans , Aged , Resistance Training/methods , Muscle Strength , Hand Strength , Weight Lifting , Walking , Muscle, Skeletal
10.
PLoS One ; 16(10): e0257810, 2021.
Article in English | MEDLINE | ID: mdl-34644331

ABSTRACT

Paralympic Powerlifting is a sport in which the strength of the upper limbs is assessed through bench press performance in an adapted specific bench. It is therefore essential to optimize training methods to maximize this performance. The aim of the present study was to compare force production and muscle activation involved in partial vs. full range of motion (ROM) training in Paralympic Powerlifting. Twelve male athletes of elite national level in Paralympic Powerlifting participated in the study (28.60 ± 7.60 years of age, 71.80 ± 17.90 kg of body mass). The athletes performed five sets of 5RM (repetition maximum), either with 90% of 1RM in full ROM or with a load of 130% 1RM in partial ROM. All subjects underwent both exercise conditions in consecutive weeks. Order assignment in the first week was random and counterbalanced. Fatigue index (FI), Maximum Isometric Force (MIF), Time to MIF (Time) and rate of force development (RFD) were determined by a force sensor. Muscle thickness was obtained using ultrasound images. All measures were taken pre- and post-training. Additionally, electromyographic signal (EMG) was evaluated in the last set of each exercise condition. Post-exercise fatigue was higher with full ROM as well as loss of MIF. Full ROM also induced greater. EMG showed greater activation of the Clavicular portion and Sternal portion of pectoralis major muscle and lower in the anterior portion of deltoid muscle when full ROM was performed. Muscle thickness of the pectoralis major muscle increased post-exercise. We concluded that training with partial ROM enables higher workloads with lower loss of muscle function.


Subject(s)
Muscle Strength , Pectoralis Muscles/physiology , Weight Lifting , Adaptation, Physiological , Adult , Humans , Male , Range of Motion, Articular , Resistance Training , Young Adult
11.
Exp Gerontol ; 151: 111391, 2021 08.
Article in English | MEDLINE | ID: mdl-33984450

ABSTRACT

This study analyzed the predictive ability of movement velocity to estimate the relative load (i.e., % of one-repetition maximum [1RM]) during the horizontal leg-press exercise in older women and men. Twenty-four women and fourteen men living in community-dwelling centers volunteered to participate in this study. All participants performed a progressive loading test up to 1RM in the horizontal leg-press. The fastest peak velocity (PV) and mean velocity (MV) attained with each weight were collected for analysis. Linear regression equations were modeled for women and men. We observed very strong linear relationships between both velocity variables and the relative load in the horizontal leg-press in women (PV: r2 = 0.93 and standard error of the estimate (SEE) = 5.96% 1RM; MV: r2 = 0.94 and SEE = 5.59% 1RM) and men (PV: r2 = 0.93 and SEE = 5.96% 1RM; MV: r2 = 0.94 and SEE = 5.97% 1RM). The actual 1RM and the estimated 1RM using both the PV and MV presented trivial differences and very strong relationships (r = 0.98-0.99) in both sexes. Men presented significantly higher (p < 0.001-0.05) estimated PV and MV against all relative loads compared to women (average PV = 0.81 vs. 0.69 m·s-1 and average MV = 0.44 vs. 0.38 m·s-1). Our data suggest that movement velocity accurately estimates the relative load during the horizontal leg-press in older women and men. Coaches and researchers can use the proposed sex-specific regression equations in the horizontal leg-press to implement velocity-monitored resistance training with older adults.


Subject(s)
Leg , Resistance Training , Aged , Biomechanical Phenomena , Female , Humans , Male , Muscle Strength , Weight Lifting
12.
Sensors (Basel) ; 21(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803927

ABSTRACT

Smartphone sensors have often been proposed as pervasive measurement systems to assess mobility in older adults due to their ease of use and low-cost. This study analyzes a smartphone-based application's validity and reliability to quantify temporal variables during the single sit-to-stand test with institutionalized older adults. Forty older adults (20 women and 20 men; 78.9 ± 8.6 years) volunteered to participate in this study. All participants performed the single sit-to-stand test. Each sit-to-stand repetition was performed after an acoustic signal was emitted by the smartphone app. All data were acquired simultaneously with a smartphone and a digital video camera. The measured temporal variables were stand-up time and total time. The relative reliability and systematic bias inter-device were assessed using the intraclass correlation coefficient (ICC) and Bland-Altman plots. In contrast, absolute reliability was assessed using the standard error of measurement and coefficient of variation (CV). Inter-device concurrent validity was assessed through correlation analysis. The absolute percent error (APE) and the accuracy were also calculated. The results showed excellent reliability (ICC = 0.92-0.97; CV = 1.85-3.03) and very strong relationships inter-devices for the stand-up time (r = 0.94) and the total time (r = 0.98). The APE was lower than 6%, and the accuracy was higher than 94%. Based on our data, the findings suggest that the smartphone application is valid and reliable to collect the stand-up time and total time during the single sit-to-stand test with older adults.


Subject(s)
Mobile Applications , Smartphone , Aged , Female , Humans , Male , Reproducibility of Results
13.
Data Brief ; 33: 106328, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33015258

ABSTRACT

The sit-to-stand test is commonly used by clinicians and researchers to analyze the functional capacity of older adults. The test consists to stand up and sit down from a chair and can be applied either in function of a predetermined number of repetitions to be completed or according to a specific time. The most common tool used by the evaluators is the chronometer, due to its low cost and ease of use. However, this tool may miss some important data throughout the test, such as the stand-up time and the total time of each repetition, as well as other kinematic and kinetic variables. Therefore, it is necessary to develop new cheap and affordable tools to capture these data with reliability. In this perspective, the development of mobile applications can be a valid and reliable alternative for the automatic calculation of different variables with sensors' data, including acceleration, velocity, force, power, and others. Thus, in this paper, we present a dataset related to the acquisition of the accelerometer data from a commodity smartphone for the measurement of different variables during the sit-to-stand test with institutionalized older adults. Forty participants (20 men and 20 women, 78.9 ± 8.6 years old, 71.7 ± 15.0 kg, 1.57 ± 0.1 m) from five community-dwelling centers (Centro de Dia e Apoio Domiciliário de Alcongosta, Lar Nossa Senhora de Fátima, Centro Comunitário das Minas da Panasqueira, Lar da Misericórdia, and Lar da Aldeia de Joanes) from Fundão, in Portugal, volunteered to participate in the data acquisition. A mobile phone was attached to the waist of the participants to capture the data during the sit-to-stand test. Then, seated in an armless chair with the arms crossed over the chest, the participants stood up and sat down in a chair six times. The stand-up action was ordered by an acoustic signal emitted by the mobile application. All data were acquired with the mobile application, and the outcome measures were the reaction time, total time, stand-up time and movement time. This paper describes the procedures to acquire the data. These data can be reused for testing machine learning or other methods for the evaluation of neuromuscular function in older adults during the sit-to-stand test.

14.
Sports (Basel) ; 7(3)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889811

ABSTRACT

Resistance training (RT) is an effective methodology to improve physical performance of athletes. However, up to now, no studies have addressed the RT benefits in under-20 futsal players. The purpose of this study was to evaluate the effects of six weeks of RT with high-velocity movements, low-to-moderate loads, and low volume on physical performance of under-20 futsal players. A total of 21 players were divided into two groups: A control group (CG, n = 10) and a RT group (RTG, n = 11). The RTG performed two weekly training sessions constituted by leg-press, jumps, and sprints, along with three futsal training sessions, while the CG only performed the futsal training. Before and after the intervention, the sprint time in 0⁻10 m (T10), 10⁻20 m (T10⁻20), and 0⁻20 m (T20), the countermovement jump (CMJ) height, the T-Test time, the kicking ball speed (KBS), and the maximum dynamic strength in the leg-press, were assessed. In post-test, significant improvements in CMJ, T-Test, KBS, and leg-press were found for the RTG, whilst a significant decrease in T10⁻20 was evidenced in the CG. The present results suggested that RT based on high velocity movements, low-to-moderate loads, and low volume produce positive effects on physical performance of under-20 futsal players.

15.
Sports Med ; 48(10): 2285-2299, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29968230

ABSTRACT

BACKGROUND: In team sports, it is imperative that the warm-up improves acute explosive performance. However, the exact strategies, methods, and consequences of different warm-up practices remain unclear. A time delay between the warm-up and match and during half-time could negate the positive metabolic effects of the warm-up. OBJECTIVES: We conducted a systematic review to synthesize and analyze the potential effects of strategies during a warm-up (before match), post-warm-up (time between the end of warm-up and the start of a match), and re-warm-up (half-time break within a match) on explosive performance in team sports. Furthermore, we examined optimal warm-up strategies based on the included studies. METHODS: We performed a search of four databases (Web of Science, Scopus, PubMed, and ScienceDirect) for original research articles published between January 1981 and August 2017. A total of 30 articles met the inclusion criteria, and the Cochrane risk of bias tool was used to assess the risk of bias. The results of the included studies were recalculated to determine effect sizes using Cohen's d. RESULTS: A warm-up comprising 8 sets of 60-m sprints (- 2.19%, d = 1.20) improved sprint performance. Additionally, 7 min of dynamic exercises after 5 min of jogging improved sprint (- 7.69%, d = 1.72), jumping (8.61%, d = 0.61), and agility performance (- 6.65%, d = 1.40). The use of small-sided games also seems to be a valid strategy, especially for jumping performance (6%, d = 0.8). These benefits resulted from the warm-up strategies combined with some passive rest (between 2 and 10 min) before the main performance. In this post-warm-up period, the use of heated garments could result in better outcomes than simple rest (- 0.89%, d = 0.39). However, if the transition was longer than 15 min, before entering the match, performing a re-warm-up with short-term explosive tasks to reactivate was the most effective approach (- 1.97%, d = - 0.86). At half-time, heated garments maintained better sprint (- 1.45%, d = 2.21) and jumping performance (3.13%, d = 1.62). CONCLUSION: Applying properly structured strategies in the warm-up and avoiding a long rest in the post-warm-up improves explosive performance. Studies tend to recommend a short active warm-up strategy (10-15 min), gradually increasing intensity (~ 50-90% of maximum heart rate), and the use of heated garments soon after the warm-up to maintain muscle temperature. However, 2 min of active re-warm-up with short-term sprints and jumps should be needed for transitions longer than 15 min (~ 90% of maximum heart rate). Last, at the half-time re-warm-up, combining heated garments to maintain muscle temperature and performing an active strategy, with explosive tasks or small-sided games for 5 min before re-entering the game, resulted in better explosive performance than 15 min of resting.


Subject(s)
Athletic Performance/physiology , Sports/physiology , Warm-Up Exercise , Body Temperature , Clothing , Exercise Test , Humans
16.
PLoS One ; 12(7): e0181311, 2017.
Article in English | MEDLINE | ID: mdl-28742112

ABSTRACT

This study aimed to estimate the energy cost across various intensities at eight popular resistance exercises: half squat, 45° inclined leg press, leg extension, horizontal bench press, 45° inclined bench press, lat pull down, triceps extension and biceps curl. 58 males (27.5 ± 4.9 years, 1.78 ± 0.06 m height, 78.67 ± 10.7 kg body mass and 11.4 ± 4.1% estimated body fat) were randomly divided into four groups of 14 subjects each. For each group, two exercises were randomly assigned and on different days, they performed four bouts of 5-min constant-intensity for each of the two assigned exercises: 12%, 16%, 20% and 24% 1-RM. Later, the subjects performed exhaustive bouts at 80% 1-RM in the same two exercises. The mean values of VO2 at the last 30s of exercise at 12, 16, 20 and 24% 1-RM bouts were plotted against relative intensity (% 1-RM) in a simple linear regression mode. The regressions were then used to predict O2 demand for the higher intensity (80% 1-RM). Energy cost rose linearly with exercise intensity in every exercise with the lowest mean values were found in biceps curl and the highest in half squat exercise (p<0.001). Half squat exercise presented significant (p<0.001) higher values of energy cost in all intensities, when compared with the remaining exercises. This study revealed that low-intensity resistance exercise provides energy cost comprised between 3 and 10 kcal∙min-1. Energy cost rose past 20 kcal∙min-1 at 80% 1-RM in leg exercise. In addition, at 80% 1-RM, it was found that upper body exercises are less anaerobic than lower-body exercises.


Subject(s)
Energy Metabolism , Exercise , Muscle, Skeletal/physiology , Adult , Biological Oxygen Demand Analysis , Humans , Male , Oxygen/metabolism , Oxygen Consumption , Young Adult
17.
Med Sci Sports Exerc ; 46(7): 1334-42, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24389516

ABSTRACT

INTRODUCTION: A conditioning maximal voluntary muscle action (MVC) has been shown to induce postactivation potentiation, that is, improved contractile muscle properties, when muscles are contracted isometrically. It is still uncertain how the contractile properties are affected during ongoing muscle length changes. The purpose of this study was to investigate the effects of a 6-s conditioning MVC on twitch properties of the plantarflexors during ongoing muscle length changes. METHODS: Peak twitch, rate of torque development, and rate of torque relaxation, rising time, and half relaxation time were measured from supramaximal twitches evoked in the plantarflexors of 11 highly trained athletes. Twitches were evoked before a 6-s MVC and subsequently on eight different occasions during a 10-min recovery for five different modes: fast lengthening, slow lengthening, isometric, fast shortening, and slow shortening of the plantarflexors. RESULTS: The magnitude and the duration of effects from the conditioning MVC were significantly different between modes. Peak twitch, rate of torque development, and rate of torque relaxation significantly increased for all modes but more so for twitches evoked during fast and slow shortening as compared with lengthening. Rising time was reduced in the lengthening modes but slightly prolonged in the shortening modes. Half relaxation time was significantly reduced for all modes, except fast lengthening. CONCLUSIONS: The findings show that the effects of a conditioning MVC on twitch contractile properties are dependent on direction and velocity of ongoing muscle length changes. This may imply that functional enhancements from a conditioning MVC might be expected to be greatest for concentric muscle actions but are still present in isometric and eccentric parts of a movement.


Subject(s)
Isometric Contraction/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Sports/physiology , Adult , Ankle/physiology , Electric Stimulation , Electromyography , Humans , Male , Muscle Relaxation/physiology , Muscle, Skeletal/anatomy & histology , Torque , Young Adult
18.
J Strength Cond Res ; 20(3): 563-71, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16937969

ABSTRACT

The object of this study was to investigate the changes in physical parameters produced during an in-season resistance training (RT) and detraining (DT, or RT cessation) in 16 high level team handball players (THPs). Apart from normal practice sessions, THPs underwent 12 weeks of RT. Subjects performed 3 sets of 3-6 reps with a load of 70-85% concentric 1 repetition maximum bench press (1RMBP), 3 sets of 3-6 reps with a load of 70-95% of 4 repetition maximum parallel squats (4RMPS), plus vertical jumps and sprints. The 1RMBP, 4RMPS, speed over 30 m (S30), jump (countermovement jump height [CMJ]; CMJ with additional weights [20kg and 40kg], and ball throw velocity (BTv) were tested before the experimental period (T1), after 6 weeks (T2), and after the 12-week experimental period (T3). Immediately after these 12 weeks, THPs started a 7-week DT period, maintained normal practices. The CMJ and the BTv were the only parameters evaluated during DT. The most important gains (p < 0.001) in S30 were obtained between T1-T2 and T1-T3. The BTv improved significantly (p < 0.001) only between T1-T2 and T1-T3. The most relevant increases (p < 0.001) in jumping performance took place between T1-T2 and T1-T3. The 1RMBP showed significant increases (p < 0.001) only between T1-T2 and T1-T3. The 4RMPS increased significantly between all testing trials. After the DT, THPs showed no significant losses in CMJ performance. However, they declined significantly in BTv (p = 0.023). The results suggest that elite THPs can optimize important physical parameters over 12 weeks in-season and that 7 weeks of DT, although insufficient to produce significant decreases in CMJ, are sufficient to induce significant decreases in BTv. It is concluded that after RT cessation THPs reduced BTv performance.


Subject(s)
Muscle Strength/physiology , Physical Education and Training/methods , Sports/physiology , Adolescent , Adult , Humans , Male , Physical Fitness/physiology , Weight Lifting/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...