Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
NPJ Parkinsons Dis ; 10(1): 68, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503737

ABSTRACT

Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.

2.
Nat Commun ; 14(1): 7461, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985656

ABSTRACT

Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.


Subject(s)
Parkinson Disease , Humans , Female , Parkinson Disease/genetics , CD8-Positive T-Lymphocytes , Cell Differentiation , Immunologic Memory
3.
medRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37790572

ABSTRACT

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives: To investigate the effects of genetic variants on risk and time to LID. Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.

5.
Ann Neurol ; 93(6): 1173-1186, 2023 06.
Article in English | MEDLINE | ID: mdl-36707720

ABSTRACT

OBJECTIVE: Vascular amyloid ß (Aß) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aß38, Aß40, Aß42, and Aß43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS: Aß peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS: We found decreased levels of all Aß peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aß42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aß43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aß peptides except Aß43 were also decreased in sCAA compared to AD (CSF Aß38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aß40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aß42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION: A combined biomarker panel of CSF Aß38, Aß40, Aß42, and Aß43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid
7.
Article in English | MEDLINE | ID: mdl-35477892

ABSTRACT

OBJECTIVE: Reactive astrogliosis is a hallmark of Alzheimer's disease (AD) and frontotemporal dementia (FTD) but differences between the diseases and time course are unclear. Here, we used serum levels of the astroglial marker glial fibrillary acidic protein (GFAP) to investigate differences in patients with AD dementia, mild cognitive impairment (MCI)-AD and behavioural variant FTD (bvFTD). METHODS: This multicentre study included serum samples from patients diagnosed with AD dementia (n=230), MCI-AD (n=111), bvFTD (n=140) and controls (n=129). A subgroup of patients with MCI-AD (n=32) was longitudinally followed-up for 3.9±2.6 years after sample collection. Serum levels of GFAP, neurofilament light chain (NfL) and pTau181 were measured by Simoa (Quanterix) and Ella (ProteinSimple). RESULTS: In total, samples from 610 individuals from four clinical centres were investigated in this study. Serum GFAP levels in AD dementia were increased (median 375 pg/mL, IQR 276-505 pg/mL) compared with controls (167 pg/mL, IQR 108-234 pg/mL) and bvFTD (190 pg/mL, IQR 134-298 pg/mL, p<0.001). GFAP was already increased in the early disease phase (MCI-AD, 300 pg/mL, IQR 232-433 pg/mL, p<0.001) and was higher in patients with MCI-AD who developed dementia during follow-up (360 pg/mL, IQR 253-414 pg/mL vs 215 pg/mL, IQR 111-266 pg/mL, p<0.01, area under the curve (AUC)=0.77). Diagnostic performance of serum GFAP for AD (AUC=0.84, sensitivity 98%, specificity 60%, likelihood ratio 2.5) was comparable to serum pTau181 (AUC=0.89, sensitivity 80%, specificity 87%, likelihood ratio 6.0) but superior to serum NfL (AUC=0.71, sensitivity 92%, specificity 49%, likelihood ratio 1.8). CONCLUSIONS: Our data indicate a different type of reactive astrogliosis in AD and bvFTD and support serum GFAP as biomarker for differential diagnosis and prediction of MCI-to-dementia conversion.

8.
Neuropathol Appl Neurobiol ; 48(5): e12804, 2022 08.
Article in English | MEDLINE | ID: mdl-35266166

ABSTRACT

AIMS: The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA). MATERIALS AND METHODS: We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-ß (Aß) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA). RESULTS: The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient but not in WT rats or a non-CAA human control. uPA expression was highly co-localised with microvascular Aß deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular Aß deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared with WT rats. CSF uPA levels were elevated in rTg-DI rats compared with WT rats (p = 0.03), and in sCAA patients compared with controls (after adjustment for age of subjects, p = 0.05 and p = 0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p = 0.09 and p = 0.44). Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA.


Subject(s)
Cerebral Amyloid Angiopathy , Urokinase-Type Plasminogen Activator , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cerebral Amyloid Angiopathy/metabolism , Humans , RNA, Messenger/metabolism , Rats , Rodentia/genetics , Rodentia/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
9.
NPJ Parkinsons Dis ; 7(1): 107, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34848724

ABSTRACT

The aim of our study was to investigate cerebrospinal fluid (CSF) tryptic peptide profiles as potential diagnostic biomarkers for the discrimination of parkinsonian disorders. CSF samples were collected from individuals with parkinsonism, who had an uncertain diagnosis at the time of inclusion and who were followed for up to 12 years in a longitudinal study. We performed shotgun proteomics to identify tryptic peptides in CSF of Parkinson's disease (PD, n = 10), multiple system atrophy patients (MSA, n = 5) and non-neurological controls (n = 10). We validated tryptic peptides with differential levels between PD and MSA using a newly developed selected reaction monitoring (SRM) assay in CSF of PD (n = 46), atypical parkinsonism patients (AP; MSA, n = 17; Progressive supranuclear palsy; n = 8) and non-neurological controls (n = 39). We identified 191 tryptic peptides that differed significantly between PD and MSA, of which 34 met our criteria for SRM development. For 14/34 peptides we confirmed differences between PD and AP. These tryptic peptides discriminated PD from AP with moderate-to-high accuracy. Random forest modelling including tryptic peptides plus either clinical assessments or other CSF parameters (neurofilament light chain, phosphorylated tau protein) and age improved the discrimination of PD vs. AP. Our results show that the discovery of tryptic peptides by untargeted and subsequent validation by targeted proteomics is a suitable strategy to identify potential CSF biomarkers for PD versus AP. Furthermore, the tryptic peptides, and corresponding proteins, that we identified as differential biomarkers may increase our current knowledge about the disease-specific pathophysiological mechanisms of parkinsonism.

11.
Neurology ; 92(13): e1479-e1486, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30814322

ABSTRACT

OBJECTIVE: To investigate the diagnostic value of serum neurofilament light chain (NFL) in patients with clear signs of parkinsonism but whose specific diagnosis was yet uncertain. METHODS: Serum samples were collected from patients with clear signs of parkinsonism but with uncertain diagnosis at the inclusion. Clinical diagnoses of Parkinson disease (PD) and atypical parkinsonism disorders (APDs) were established after 3 years of follow-up and updated again after a maximum of 12 years in case longer follow-up data were available. Serum NFL was quantified by single molecule array in patients with PD (n = 55) and APD (n = 29, multiple system atrophy = 22, progressive supranuclear palsy = 7) and 53 nonneurologic controls. RESULTS: Serum NFL levels were elevated and differentiated the APD group (mean 23.8 ± 10.3 ng/L) from PD (mean 10.4 ± 4.9 ng/L) and controls (mean 11.5 ± 6.5 ng/L, p < 0.0001) with accuracy levels up to 91% (sensitivity = 86% and specificity = 85%). Serum NFL strongly correlated with CSF NFL levels (r = 0.72, p < 0.0001) in all groups and with age in PD (r = 0.78, p < 0.0001) and controls (r = 0.66, p < 0.0001). In our cohort, the probability of having APD was 76% (positive predictive value) and of having PD 92% (negative predictive value). CONCLUSION: Serum NFL levels are markedly elevated in APD compared to PD and discriminate APDs from PD with high accuracy. Serum NFL may be a useful clinical biomarker to identify APD, even at stages when clinical symptoms are not yet conclusive. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that serum NFL levels accurately discriminate APDs from PD.


Subject(s)
Multiple System Atrophy/diagnosis , Neurofilament Proteins/blood , Parkinson Disease/diagnosis , Supranuclear Palsy, Progressive/diagnosis , Aged , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Multiple System Atrophy/blood , Parkinson Disease/blood , Parkinsonian Disorders/blood , Parkinsonian Disorders/diagnosis , Sensitivity and Specificity , Supranuclear Palsy, Progressive/blood
12.
Mol Neurobiol ; 56(7): 5067-5074, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30465235

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder in elderly people. Currently, the diagnosis of PD is based on neurological examination, neuroimaging, and the response to dopaminergic medication. The diagnosis can be challenging, especially at early disease stages, when the symptoms of patients with atypical parkinsonism (APD) may strongly overlap. Therefore, reliable biomarkers that are able to identify patients with PD are much needed. Here, we aimed to identify and validate new biomarkers for PD in cerebrospinal fluid (CSF). We performed a profiling experiment using mass spectrometry (MS) of CSF from ten PD patients and ten matched non-neurological controls. We selected one protein, galectin-1 (Gal-1), which was differentially expressed in PD vs. controls, and quantified its concentrations in CSF by enzyme-linked immunosorbent assay (ELISA) in three new cohorts of 37 PD patients, 21 APD patients, and 44 controls. CSF levels of Gal-1 were lower in PD in both the discovery and validation experiments and discriminated PD from controls with moderate-high accuracy levels (ELISA: area under the curve = 0.7). Similar levels of Gal-1 were found in PD and APD. Gal-1 levels were correlated to age in all groups and correlated in the PD patients to CSF levels of total tau, phosphorylated tau, neurofilament light chain (NFL), and the mini-mental state examination (MMSE) score. We conclude that MS profiling of proteins may be a useful tool to identify novel biomarkers of neurological diseases and that CSF Gal-1 levels may discriminate PD from non-neurological controls.


Subject(s)
Galectin 1/cerebrospinal fluid , Parkinsonian Disorders/cerebrospinal fluid , Parkinsonian Disorders/diagnosis , Aged , Biomarkers/analysis , Biomarkers/cerebrospinal fluid , Cohort Studies , Female , Galectin 1/analysis , Humans , Male , Mass Spectrometry/methods , Middle Aged
13.
Handb Clin Neurol ; 146: 99-113, 2017.
Article in English | MEDLINE | ID: mdl-29110782

ABSTRACT

The incidence of neurodegenerative disorders is increasing due to worldwide population aging. In general, sporadic forms account for 90% of total cases with neurodegenerative disorders and the reasons underlying initiation or progression of these diseases remain unknown for almost all disorders. To date, diagnosis is mainly based on clinical symptoms and neuroimaging, which is in many cases insufficient due to overlap in clinical symptoms among several neurodegenerative disorders. Therefore, postmortem neuropathologic confirmation remains the gold-standard diagnostic technique for many disorders. Biomarkers that could help in defining the clinical diagnosis, or predict disease progression and response to treatment, would therefore be very useful. In this chapter, we discuss potential biomarkers in cerebrospinal fluid studied in synucleinopathies, tauopathies, and other neurodegenerative disorders, and their possible application for clinical practice. Dementias are excluded in this analysis as these are discussed in Chapter 6.


Subject(s)
Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/diagnosis , Synucleins/cerebrospinal fluid , Tauopathies/cerebrospinal fluid , Tauopathies/diagnosis , Animals , Biomarkers/cerebrospinal fluid , Humans
14.
Mol Neurobiol ; 54(10): 7736-7745, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27844283

ABSTRACT

Parkinson's disease (PD) and multiple system atrophy (MSA) are both part of the spectrum of neurodegenerative movement disorders and α-synucleinopathies with overlap of symptoms especially at early stages of the disease but with distinct disease progression and responses to dopaminergic treatment. Therefore, having biomarkers that specifically classify patients, which could discriminate PD from MSA, would be very useful. MicroRNAs (miRNAs) regulate protein translation and are observed in biological fluids, including cerebrospinal fluid (CSF), and may therefore have potential as biomarkers of disease. The aim of our study was to determine if miRNAs in CSF could be used as biomarkers for either PD or MSA. Using quantitative PCR (qPCR), we evaluated expression levels of 10 miRNAs in CSF patient samples from PD (n = 28), MSA (n = 17), and non-neurological controls (n = 28). We identified two miRNAs (miR-24 and miR-205) that distinguished PD from controls and four miRNAs that differentiated MSA from controls (miR-19a, miR-19b, miR-24, and miR-34c). Combinations of miRNAs accurately discriminated either PD (area under the curve (AUC) = 0.96) or MSA (AUC = 0.86) from controls. In MSA, we also observed that miR-24 and miR-148b correlated with cerebellar ataxia symptoms, suggesting that these miRNAs are involved in cerebellar degeneration in MSA. Our findings support the potential of miRNA panels as biomarkers for movement disorders and may provide more insights into the pathological mechanisms related to these disorders.


Subject(s)
MicroRNAs/cerebrospinal fluid , Multiple System Atrophy/cerebrospinal fluid , Multiple System Atrophy/diagnosis , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnosis , Aged , Biomarkers/cerebrospinal fluid , Female , Humans , Male , MicroRNAs/genetics , Middle Aged , Multiple System Atrophy/genetics , Parkinson Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...