Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Purinergic Signal ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37165287

ABSTRACT

CD39 (NTPDase1-nucleoside triphosphate diphosphohydrolase 1) is a membrane-tethered ectonucleotidase that hydrolyzes extracellular ATP to ADP and ADP to AMP. This enzyme is expressed in a variety of cell types and tissues and has broadly been recognized within vascular tissue to have a protective role in converting "danger" ligands (ATP) into neutral ligands (AMP). In this study, we investigate the enzyme kinetics of CD39 using a Michaelis-Menten modeling framework. We show how the unique situation of having a reaction product also serving as a substrate (ADP) complicates the determination of the governing kinetic parameters. Model simulations using values for the kinetic parameters reported in the literature do not align with corresponding time-series data. This dissonance is explained by CD39 kinetic parameters previously being determined by graphical/linearization methods, which have been shown to distort the underlying error structure and lead to inaccurate parameter estimates. Modern methods of estimating these kinetic parameters using nonlinear least squares are still challenging due to unidentifiable parameter interactions. We propose a workflow to accurately determine these parameters by isolating the ADPase and ATPase reactions and estimating the respective ADPase parameters and ATPase parameters with independent data sets. Theoretically, this ensures all kinetic parameters are identifiable and reliable for future prospective model simulations involving CD39. These kinds of mathematical models can be used to understand how circulating purinergic nucleotides affect disease etiology and potentially inform the development of corresponding therapies.

2.
PLoS Comput Biol ; 17(5): e1008861, 2021 05.
Article in English | MEDLINE | ID: mdl-33956786

ABSTRACT

The relationship between regional variabilities in airflow (ventilation) and blood flow (perfusion) is a critical determinant of gas exchange efficiency in the lungs. Hypoxic pulmonary vasoconstriction is understood to be the primary active regulator of ventilation-perfusion matching, where upstream arterioles constrict to direct blood flow away from areas that have low oxygen supply. However, it is not understood how the integrated action of hypoxic pulmonary vasoconstriction affects oxygen transport at the system level. In this study we develop, and make functional predictions with a multi-scale multi-physics model of ventilation-perfusion matching governed by the mechanism of hypoxic pulmonary vasoconstriction. Our model consists of (a) morphometrically realistic 2D pulmonary vascular networks to the level of large arterioles and venules; (b) a tileable lumped-parameter model of vascular fluid and wall mechanics that accounts for the influence of alveolar pressure; (c) oxygen transport accounting for oxygen bound to hemoglobin and dissolved in plasma; and (d) a novel empirical model of hypoxic pulmonary vasoconstriction. Our model simulations predict that under the artificial test condition of a uniform ventilation distribution (1) hypoxic pulmonary vasoconstriction matches perfusion to ventilation; (2) hypoxic pulmonary vasoconstriction homogenizes regional alveolar-capillary oxygen flux; and (3) hypoxic pulmonary vasoconstriction increases whole-lobe oxygen uptake by improving ventilation-perfusion matching.


Subject(s)
Hypoxia/physiopathology , Models, Biological , Pulmonary Circulation/physiology , Ventilation-Perfusion Ratio/physiology , Algorithms , Animals , Arterioles/physiopathology , Biophysical Phenomena , Computational Biology , Computer Simulation , Humans , Lung/blood supply , Lung/physiopathology , Oxygen/physiology , Pulmonary Gas Exchange/physiology , Rats , Vasoconstriction/physiology , Venules/physiopathology
3.
Math Biosci ; 304: 9-24, 2018 10.
Article in English | MEDLINE | ID: mdl-30017910

ABSTRACT

Mathematical models are essential tools to study how the cardiovascular system maintains homeostasis. The utility of such models is limited by the accuracy of their predictions, which can be determined by uncertainty quantification (UQ). A challenge associated with the use of UQ is that many published methods assume that the underlying model is identifiable (e.g. that a one-to-one mapping exists from the parameter space to the model output). In this study we present a novel workflow to calibrate a lumped-parameter model to left ventricular pressure and volume time series data. Key steps include using (1) literature and available data to determine nominal parameter values; (2) sensitivity analysis and subset selection to determine a set of identifiable parameters; (3) optimization to find a point estimate for identifiable parameters; and (4) frequentist and Bayesian UQ calculations to assess the predictive capability of the model. Our results show that it is possible to determine 5 identifiable model parameters that can be estimated to our experimental data from three rats, and that computed UQ intervals capture the measurement and model error.


Subject(s)
Hemodynamics , Models, Cardiovascular , Patient-Specific Modeling , Uncertainty , Animals , Female , Humans , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...