Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ultramicroscopy ; 215: 112996, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32505825

ABSTRACT

The technique of atom probe tomography is often used to image solute clusters and solute atom segregation to dislocation lines in structural alloys. Quantitative analysis, however, remains a common challenge. To address this gap, we combined a cluster finding algorithm, a skeleton finder algorithm, and morphological classification of dense objects to distinguish solute clusters from solute-decorated dislocation lines, both being characterized by high solute atom densities. The proposed workflow is packaged into a graphical user interface available through GitHub. We illustrate its application on a synthetic dataset containing known objects and apply it to an experimental dataset obtained from a proton-irradiated Alloy 625 that contains high densities of Si-decorated dislocations and Si-rich clusters.

2.
Ultramicroscopy ; 200: 28-38, 2019 05.
Article in English | MEDLINE | ID: mdl-30822614

ABSTRACT

Atom probe tomography (APT) has enabled the direct visualization of solute clusters. However one of the main analysis methods used by the APT community, i.e. the maximum separation method, often suffers from subjective parametric selection and limited applicability. To address the need for more robust and versatile analysis tools, a framework based on hierarchical density-based cluster analysis is implemented. Cluster analysis begins with the HDBSCAN algorithm to conservatively segment the datasets into regions containing clusters and a matrix or noise region. The stability of each cluster and the probability that an atom belongs to a cluster are quantified. Each clustered region is further analyzed by the DeBaCl algorithm to separate and refine clusters present in the sub-volumes. Finally, the k-nearest neighbor algorithm may be used to re-assign matrix atoms to clusters, based on their probability values. Four mandatory parameters are required for this cluster analysis approach. However, the selection of an appropriate value for only one of these parameters, i.e. a rough estimate of the minimum cluster size, is essential. The improved performance of the method was evaluated by analyzing four synthetic APT datasets and comparing the outcome with the commonly-used maximum separation method. Codes and data are made available through GitHub.

3.
J Microsc ; 264(3): 304-310, 2016 12.
Article in English | MEDLINE | ID: mdl-27513447

ABSTRACT

The mechanism of the increase in ductility in bulk metallic glass matrix composites over monolithic bulk metallic glasses is to date little understood, primarily because the interplay between dislocations in the crystalline phase and shear bands in the glass could neither be imaged nor modelled in a validated way. To overcome this roadblock, we show that shear bands can be imaged in three dimensions by atom probe tomography from density variations in the reconstructed atomic density, which density-functional theory suggests being a local-work function effect. Imaging of near-interface shear bands in Ti48 Zr20 V12 Cu5 Be15 bulk metallic glass matrix composite permits measurement of their composition, thickness, branching and interactions with the dendrite interface. These results confirm that shear bands here nucleate from stress concentrations in the glass due to intense, localized plastic deformation in the dendrites rather than intrinsic structural inhomogeneities.

4.
Ultramicroscopy ; 132: 205-11, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23276526

ABSTRACT

A major practical challenge in heterogeneous catalysis is to minimize the loading of expensive platinum group metals (PGMs) without degrading the overall catalytic efficiency. Gaining a thorough atomic-scale understanding of the chemical/structural changes occurring during catalyst manufacture/operation could potentially enable the design and production of "nano-engineered" catalysts, optimized for cost, stability and performance. In the present study, the oxidation behavior of a Pt-31 at% Pd alloy between 673-1073 K is investigated using atom probe tomography (APT). Over this range of temperatures, three markedly different chemical structures are observed near the surface of the alloy. At 673 K, the surface oxide formed is enriched with Pd, the concentration of which rises further following oxidation at 773 K. During oxidation at 873 K, a thick, stable oxide layer is formed on the surface with a stoichiometry of PdO, beneath which a Pd-depleted (Pt-rich) layer exists. Above 873 K, the surface composition switches to enrichment in Pt, with the Pt content increasing further with increasing oxidation temperature. This treatment suggests a route for tuning the surfaces of Pt-Pd nanoparticles to be either Pd-rich or Pt-rich, simply by adjusting the oxidation temperatures in order to form two different types of core-shell structures. In addition, comparison of the oxidation behavior of Pt-Pd with Pt-Rh and Pd-Rh alloys demonstrates markedly different trends under the same conditions for these three binary alloys.

5.
Ultramicroscopy ; 125: 10-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23262147

ABSTRACT

Atom probe tomography (APT) is used to investigate the composition of oxygen rich nanoparticles within a ferritic matrix in Fe-14Cr-2W-0.1Ti oxide-dispersion-strengthened (ODS) steel. This study investigates whether artifacts associated with APT analysis are the cause of a sub-stoichiometric oxide composition measurement. Bulk Y2O3 is analyzed by APT, thus demonstrating the ability of the technique to measure near-stoichiometric composition measurements in insulating oxides. Through analysis of the sequence of ion hits on the detector during APT data acquisition, it is shown that a proportion of yttrium hits are spatially correlated but oxygen hits are not. Y-O based nanoparticles in a ferritic matrix are analyzed by APT using voltage pulsing and a laser pulsing with a range of laser energies from 0.3-0.8 nJ. When the material is analyzed using a high effective evaporation field, this influences the effect of trajectory aberrations, and the apparent size of the nanoparticles is reduced. Some reduction in Y:O ratio is observed, caused by high instances of multiple-ion evaporation events. From a detailed comparison between the results of APT analysis of the bulk Y2O3 the nanoparticles in the ODS material are concluded to have an approximate Y:O ratio of 1:1.

6.
Nat Mater ; 10(9): 710-5, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21822262

ABSTRACT

The size distribution of particles, which is essential for many properties of nanomaterials, is equally important for the mechanical behaviour of the class of alloys whose strength derives from a dispersion of nanoscale precipitates. However, particle size distributions formed by solid-state precipitation are generally not well controlled. Here we demonstrate, through the example of core-shell precipitates in Al-Sc-Li alloys, an approach to forming highly monodisperse particle size distributions by simple solid-state reactions. The approach involves the use of a two-step heat treatment, whereby the core formed at high temperature provides a template for growth of the shell at lower temperature. If the core is allowed to grow to a sufficient size, the shell develops in a 'size focusing' regime, where smaller particles grow faster than larger ones. These results suggest strategies for manipulating precipitate size distributions in similar systems through simple variations in thermal treatments.

7.
Ultramicroscopy ; 111(8): 1073-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21740870

ABSTRACT

Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33.

8.
Ultramicroscopy ; 111(6): 664-71, 2011 May.
Article in English | MEDLINE | ID: mdl-21227587

ABSTRACT

Nanometre scale clusters form in Cu-containing reactor pressure vessel (RPV) steels during neutron irradiation. These clusters have a deleterious effect on mechanical properties, which can result in embrittlement and limit the reactor operating life. Thermal ageing of RPV steels can also induce the formation of solute clusters but it is not clear how similar these are to those formed during irradiation. In this work atom probe tomography, combined with detailed structural assessments of the structure of solute clusters, is used to address this issue. A series of thermal ageing heat treatments has been performed on several high- and low-Ni RPV welds to produce 1-4 nm diameter solute clusters. The same materials have also been neutron irradiated. The results show that CuMnNiSi enriched clusters formed during thermal ageing have, on average, higher Cu contents and lower Mn, Ni and Si contents than those found in irradiation-induced clusters. The effect of increasing bulk Ni is to encourage the formation of clusters with significantly higher Ni content, slightly higher Mn and Si contents and significantly lower Cu contents. At very high doses and dose rates MnNiSi enriched clusters can form even in high-Cu welds. Despite differences in the compositions of individual clusters formed during irradiation and during thermal ageing, clusters in both exhibit similar structure. In particular, well developed clusters in both materials have Cu-enriched cores whose peripheries are enriched in Ni, Mn and, in most cases, Si.

9.
Ultramicroscopy ; 111(6): 440-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21227588

ABSTRACT

Variants of the maximum separation method have become the de-facto methodologies for the characterisation of nanometre scale clusters in atom probe tomography (APT) data obtained from dilute solid solutions. All variants rely on a number of parameters and it is well known that the precise values for these parameters strongly influence estimates of cluster size and number density. Quantitative analyses require an improved understanding of the inter-relationship between user-defined parameters, experimental parameters such as detection efficiency and the resultant parameterisation of the microstructure. A series of simulations has been performed to generate clusters with a range of compositions (50-100%) and diameters (1.5-2.5 nm) in a dilute solid solution. The data were degraded to simulate the effects of the finite detection efficiencies and positioning uncertainties associated with the ECOPoSAP and LEAP-3000X HR. An extensive analysis of each resultant dataset, using a range of values for the maximum separation parameters was then performed. Optimum values for each material condition were identified and it is shown that it is possible to characterise cluster size, number density and matrix chemistry. However, accurate estimates of cluster compositions are more difficult and absolute measurements must be treated with caution. Furthermore, it is shown that D(MAX) must increase with decreasing detection efficiency and consequently clusters of a specific size will appear slightly larger in atom probes with a lower detection efficiency.

10.
Ultramicroscopy ; 111(6): 448-57, 2011 May.
Article in English | MEDLINE | ID: mdl-21146931

ABSTRACT

Key to the integrity of atom probe microanalysis, the tomographic reconstruction is built atom by atom following a simplistic protocol established for previous generations of instruments. In this paper, after a short review of the main reconstruction protocols, we describe recent improvements originating from the use of exact formulae enabling significant reduction of spatial distortions, especially near the edges of the reconstruction. We also show how predictive values for the reconstruction parameters can be derived from electrostatic simulations, and finally introduce parameters varying throughout the analysis.

11.
J Microsc ; 241(3): 225-33, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21118216

ABSTRACT

Atom-probe tomography analysis of complex multilayer structures is a promising avenue for studying interfacial properties. However, significant artefacts in the three-dimensional reconstructed data arise due to the field evaporation process. To clarify the origin and impact of these artefacts for a FeCoB/FeCo/MgO/FeCo/IrMn multilayer, tip shapes were observed by transmission electron microscopy and compared to those obtained by finite difference modelling of electric fields and evaporation processes. It was found that the emitter shape is not spherical and its surface morphology evolves during successive evaporation of the different layers. This evolving morphology contributes to the artefacts generally observed in the reconstructed atom-probe data for multilayer structures because algorithms for three-dimensional reconstruction are based on the assumption that the shape of the emitter during field evaporation is spherical. Some proposed improvements to data reconstruction are proposed.

12.
Phys Rev Lett ; 93(15): 156101, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15524904

ABSTRACT

We present a combined experimental and theoretical analysis of the structure of finite-sized Sigma 3 [112] grain boundaries in Au. High-resolution electron microscopy shows lattice translations at the grain boundary, with the magnitude of the translation varying along the finite-sized grain boundaries. The presence of this structural profile is explained using continuum elasticity theory and first-principles calculations as originating from a competition between elastic energy and the energy cost of forming continuous [111] planes across the boundary. This competition leads to a structural transition between offset-free and nontrivial grain boundary structures at a critical grain boundary size, in agreement with the experiments. We also provide a method to estimate the energy barrier of the gamma surface.

13.
Phys Rev Lett ; 91(3): 036101, 2003 Jul 18.
Article in English | MEDLINE | ID: mdl-12906429

ABSTRACT

Microscopic factors governing solute partitioning in ternary two-phase Al-Sc-Mg alloys are investigated combining three-dimensional-atom-probe (3DAP) microscopy measurements with first-principles computations. 3DAP is employed to measure composition profiles with subnanometer-scale resolution, leading to the identification of a large enhancement of Mg solute at the coherent alpha-Al/Al(3)Sc (fcc/L1(2)) heterophase interface. First-principles calculations establish an equilibrium driving force for this interfacial segregation reflecting the nature of the interatomic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...