Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; 18(35): e2202768, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35931457

ABSTRACT

High-sensitivity nanomechanical sensors are mostly based on silicon technology and related materials. The use of functional materials, such as complex oxides having strong interplay between structural, electronic, and magnetic properties, may open possibilities for developing new mechanical transduction schemes and for further enhancement of the device performances. The integration of these materials into micro/nano-electro-mechanical systems (MEMS/NEMS) is still at its very beginning and critical basic aspects related to the stress state and the quality factors of mechanical resonators made from epitaxial oxide thin films need to be investigated. Here, suspended micro-bridges are realized from single-crystal thin films of (La0.7 ,Sr0.3 )MnO3 (LSMO), a prototypical complex oxide showing ferromagnetic ground state at room temperature. These devices are characterized in terms of resonance frequency, stress state, and Q-factor. LSMO resonators are highly stressed, with a maximum value of ≈260 MPa. The temperature dependence of their mechanical resonance is discussed considering both thermal strain and the temperature-dependent Young's modulus. The measured Q-factors reach few tens of thousands at room temperature, with indications of further improvements by optimizing the fabrication protocols. These results demonstrate that complex oxides are suitable to realize high Q-factor mechanical resonators, paving the way toward the development of full-oxide MEMS/NEMS sensors.

2.
ACS Appl Mater Interfaces ; 14(22): 25722-25730, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35618661

ABSTRACT

The potential of Fe2TiSn full-Heusler compounds for thermoelectric applications has been suggested theoretically, but not yet proven experimentally, due to the difficulty in obtaining reproducible, homogeneous, phase-pure and defect-free samples. In this work, we studied Fe2TiSn1-xSbx polycrystals (x from 0 to 0.6), fabricated by high-frequency melting and long-time high-temperature annealing. We obtained fairly good phase purity, a homogeneous microstructure, and good matrix stoichiometry. Although the intrinsic p-type transport behavior is dominant, n-type charge compensation by Sb-doping is demonstrated. Calculations of the formation energy of defects and electronic properties carried out using the density functional theory formalism reveal that charged iron vacancies VFe2- are the dominant defects responsible for the intrinsic p-type doping of Fe2TiSn under all types of (except Fe-rich) growing conditions. In addition, Sb substitutions at the Sn site give rise either to SbSn, SbSn1+, which are responsible for n-type doping and magnetism (SbSn) or to magnetic SbSn1-, which act as additional p-type dopants. Our experimental data highlight good thermoelectric properties close to room temperature, with Seebeck coefficients up to 56 µV/K in the x = 0.2 sample and power factors up to 4.8 × 10-4 W m-1 K-2 in the x = 0.1 sample. Our calculations indicate the appearance of a pseudogap under Ti-rich conditions and a large Sb-doping level, possibly improving further the thermoelectric properties.

3.
Nano Lett ; 20(10): 7251-7256, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32845156

ABSTRACT

Actuation at micro- and nanoscale often requires large displacements and applied forces. The high work energy density that lies inside many phase transitions is an appealing feature for developing new actuating schemes, especially if the transition is reversible and scalable into small actuating domains. Here, we show the fabrication of a planar nanomechanical actuator having chevron-type geometry and based on the phase transition of VO2. This device is thermally activated through heating just above room temperature to trigger the VO2 crystalline symmetry change associated with the metal-insulator transition. The large lattice expansion of VO2 phase transition, compared to standard materials, is further amplified by the chevron-type geometry. DC and AC operation of the device are discussed.

4.
ACS Appl Mater Interfaces ; 12(25): 28894-28902, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32482063

ABSTRACT

Macroscopic current-voltage measurements and nanoscopic ballistic electron emission spectroscopy (BEES) have been used to probe the Schottky barrier height (SBH) at metal/Ge(100) junctions for two metal electrodes (Au and Pt) and different metallization methods, specifically, thermal-vapor and laser-vapor deposition. Analysis of macroscopic current-voltage characteristics indicates that a SBH of 0.61-0.63 eV controls rectification at room temperature. On the other hand, BEES measured at 80 K reveals the coexistence of two distinct barriers at the nanoscale, taking values in the ranges 0.61-0.64 and 0.70-0.74 eV for the cases studied. For each metal-semiconductor junction, the macroscopic measurement agrees well with the lower barrier found with BEES. Ab initio modeling of BEES spectra ascribes the two barriers to two different atomic registries between the metals and the Ge(100) surface, a significant relevant insight for next-generation highly miniaturized Ge-based devices.

5.
Adv Mater ; 29(35)2017 Sep.
Article in English | MEDLINE | ID: mdl-28714094

ABSTRACT

Relaxation oscillators consist of periodic variations of a physical quantity triggered by a static excitation. They are a typical consequence of nonlinear dynamics and can be observed in a variety of systems. VO2 is a correlated oxide with a solid-state phase transition above room temperature, where both electrical resistance and lattice parameters undergo a drastic change in a narrow temperature range. This strong nonlinear response allows to realize spontaneous electrical oscillations in the megahertz range under a DC voltage bias. These electrical oscillations are employed to set into mechanical resonance a microstructure without the need of any active electronics, with small power consumption and with the possibility to selectively excite specific flexural modes by tuning the value of the DC electrical bias in a range of few hundreds of millivolts. This actuation method is robust and flexible and can be implemented in a variety of autonomous DC-powered devices.

6.
Nat Commun ; 6: 6678, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25813265

ABSTRACT

Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays high negative values of the order of 10(4)-10(5) µVK(-1), oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study provides direct evidence of a localized Anderson tail in the two-dimensional electron liquid at the LaAlO3/SrTiO3 interface.

7.
Adv Mater ; 25(44): 6430-5, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24038351

ABSTRACT

A programmable micromechanical resonator based on a VO2 thin film is reported. Multiple mechanical eigenfrequency states are programmed using Joule heating as local power source, gradually driving the phase transition of VO2 around its Metal-Insulator transition temperature. Phase coexistence of domains is used to tune the stiffness of the device via local control of internal stresses and mechanical properties. This study opens perspectives for developing mechanically configurable nanostructure arrays.

8.
Adv Mater ; 24(21): 2929-34, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22528823

ABSTRACT

Two-terminal multistate memory elements based on VO(2)/TiO(2) thin film microcantilevers are reported. Volatile and non-volatile multiple resistance states are programmed by current pulses at temperatures within the hysteretic region of the metal-insulator transition of VO(2). The memory mechanism is based on current-induced creation of metallic clusters by self-heating of micrometric suspended regions and resistive reading via percolation.


Subject(s)
Semiconductors , Titanium/chemistry , Vanadium Compounds/chemistry , Electric Conductivity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL