Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
Front Immunol ; 15: 1425816, 2024.
Article in English | MEDLINE | ID: mdl-39188713

ABSTRACT

The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.


Subject(s)
Diet, Ketogenic , Neuroinflammatory Diseases , Humans , Animals , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/diet therapy , Neuroinflammatory Diseases/metabolism , Ketone Bodies/metabolism , Immunomodulation
3.
Cancer Cell ; 42(6): 1003-1017.e6, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861923

ABSTRACT

Histological transformation of follicular lymphoma (FL) to aggressive forms is associated with poor outcome. Phenotypic consequences of this evolution and its impact on the tumor microenvironment (TME) remain unknown. We perform single-cell whole genome sequencing (scWGS) and transcriptome sequencing (scWTS) of 11 paired pre/post-transformation patient samples and scWTS of additional samples from patients without transformation. Our analysis reveals evolutionary dynamics of transformation at single-cell resolution, highlighting a shifting TME landscape, with an emerging immune-cell exhaustion signature, co-evolving with the shifting malignant B phenotype in a regulatory ecosystem. Integration of scWGS and scWTS identifies malignant cell pathways upregulated during clonal tumor evolution. Using multi-color immunofluorescence, we transfer these findings to a TME-based transformation biomarker, subsequently validated in two independent pretreatment cohorts. Taken together, our results provide a comprehensive view of the combined genomic and phenotypic evolution of malignant cells during transformation and shifting crosstalk between malignant cells and the TME.


Subject(s)
Lymphoma, Follicular , Single-Cell Analysis , Tumor Microenvironment , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Follicular/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Single-Cell Analysis/methods , Cell Transformation, Neoplastic/genetics , B-Lymphocytes/immunology , B-Lymphocytes/pathology , B-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , Transcriptome , Biomarkers, Tumor/genetics , Whole Genome Sequencing , Gene Expression Profiling/methods
4.
Nat Commun ; 15(1): 4165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755180

ABSTRACT

The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.


Subject(s)
DNA Copy Number Variations , Gene Expression Profiling , Neoplasms , Humans , Child , Neoplasms/genetics , Neoplasms/therapy , Female , Adolescent , Male , Child, Preschool , Prognosis , Gene Expression Profiling/methods , Infant , Transcriptome , Young Adult , Whole Genome Sequencing , Germ-Line Mutation , Mutation , Genome, Human/genetics , Genetic Predisposition to Disease
5.
Curr Oncol ; 31(4): 1865-1875, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38668043

ABSTRACT

Immune checkpoint inhibitors (ICIs) are increasingly used in the treatment of many tumor types, and durable responses can be observed in select populations. However, patients may exhibit significant immune-related adverse events (irAEs) that may lead to morbidity. There is limited information on whether the presence of specific germline mutations may highlight those at elevated risk of irAEs. We evaluated 117 patients with metastatic solid tumors or hematologic malignancies who underwent genomic analysis through the ongoing Personalized OncoGenomics (POG) program at BC Cancer and received an ICI during their treatment history. Charts were reviewed for irAEs. Whole genome sequencing of a fresh biopsy and matched normal specimens (blood) was performed at the time of POG enrollment. Notably, we found that MHC class I alleles in the HLA-B27 family, which have been previously associated with autoimmune conditions, were associated with grade 3 hepatitis and pneumonitis (q = 0.007) in patients treated with combination PD-1/PD-L1 and CTLA-4 inhibitors, and PD-1 inhibitors in combination with IDO-1 inhibitors. These data highlight that some patients may have a genetic predisposition to developing irAEs.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Male , Neoplasms/drug therapy , Female , Middle Aged , Aged , Germ-Line Mutation , Adult , Aged, 80 and over
6.
J Clin Pathol ; 77(6): 430-434, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38429092

ABSTRACT

We demonstrate a method for tissue microdissection using scanning laser ablation that is approximately two orders of magnitude faster than conventional laser capture microdissection. Our novel approach uses scanning laser optics and a slide coating under the tissue that can be excited by the laser to selectively eject regions of tissue for further processing. Tissue was dissected at 0.117 s/mm2 without reduction in yield, sequencing insert size or base quality compared with undissected tissue. From eight cases, 58-416 mm2 of tissue was obtained from one to four slides in 7-48 seconds total dissection time per case. These samples underwent exome sequencing and we found the variant allelic fraction increased in regions enriched for tumour as expected. This suggests that our ablation technique may be useful as a tool in both clinical and research labs.


Subject(s)
Laser Capture Microdissection , Humans , Laser Capture Microdissection/methods , Laser Therapy/methods , Microdissection/methods , Exome Sequencing , Time Factors
7.
J Pers Med ; 14(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38541034

ABSTRACT

The developing domain of mental health in sports has gained much interest, acknowledging its pivotal role in athlete performance and well-being. The aim of this research is to provide a quantitative description concerning the levels of mental health, physical activity, cognitive fusion, cognitive flexibility, and coping strategies that characterize rugby athletes by using a data-driven approach. A total of 92 rugby athletes took part in this study and filled out a set of self-administered questionnaires. A correlational analysis showed that general well-being was positively associated with years spent playing rugby (r = 0.23) and coping mechanisms (r = 0.29). Athletes' well-being was also negatively correlated with cognitive inflexibility (r = -0.41) and cognitive fusion (r = -0.39). A k-means cluster analysis identified two unique groups: group 1, characterized by higher levels of psychological well-being, lower levels of physical activity, greater cognitive flexibility, improved coping techniques, and reduced cognitive fusion, and group 2, which exhibits opposite characteristics. The discrepancies observed in psychological characteristics such as coping strategies, cognitive fusion, and cognitive inflexibility highlight their potential impact on the general health of rugby players. To comprehend the complex interplay between psychological and physical elements in rugby athletes, long-term studies with larger samples are crucial.

8.
Behav Sci (Basel) ; 14(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540561

ABSTRACT

This study explores the interplay between executive functions and body weight, examining both the influence of biological factors, specifically sex, and methodological issues, such as the choice between Body Mass Index (BMI) and waist circumference (WC) as the primary anthropometric measure. A total of 386 participants (222 females, mean age = 45.98 years, SD = 17.70) were enrolled, from whom sociodemographic (sex, age, years of formal education) and anthropometric (BMI and WC) data were collected. Executive functions were evaluated using the Frontal Assessment Battery-15 (FAB15). The results showed the increased effectiveness of WC over BMI in examining the relationships between executive functions, sex differences, and body weight. In particular, this study revealed that there was a significant moderating effect of sex at comparable levels of executive functioning. Specifically, women with higher executive performance had lower WCs than their male counterparts, suggesting that executive function has a greater impact on WC in women than in men. Our findings highlight the importance of conducting more in-depth investigations of the complex relationship between cognitive deficits and weight gain, considering confounding variables of behavioral, psychobiological, and neurophysiological origin.

9.
Clin Chem ; 70(1): 273-284, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38175592

ABSTRACT

BACKGROUND: Somatic hypermutation (SHM) status of the immunoglobulin heavy variable (IGHV) gene plays a crucial role in determining the prognosis and treatment of patients with chronic lymphocytic leukemia (CLL). A common approach for determining SHM status is multiplex polymerase chain reaction and Sanger sequencing of the immunoglobin heavy locus; however, this technique is low throughput, is vulnerable to failure, and does not allow multiplexing with other diagnostic assays. METHODS: Here we designed and validated a DNA targeted capture approach to detect immunoglobulin heavy variable somatic hypermutation (IGHV SHM) status as a submodule of a larger next-generation sequencing (NGS) panel that also includes probes for ATM, BIRC3, CHD2, KLHL6, MYD88, NOTCH1, NOTCH2, POT1, SF3B1, TP53, and XPO1. The assay takes as input FASTQ files and outputs a report containing IGHV SHM status and V allele usage following European Research Initiative on CLL guidelines. RESULTS: We validated the approach on 35 CLL patient samples, 34 of which were characterized using Sanger sequencing. The NGS panel identified the IGHV SHM status of 34 of 35 CLL patients. We showed 100% sensitivity and specificity among the 33 CLL samples with both NGS and Sanger sequencing calls. Furthermore, we demonstrated that this panel can be combined with additional targeted capture panels to detect prognostically important CLL single nucleotide variants, insertions/deletions, and copy number variants (TP53 copy number loss). CONCLUSIONS: A targeted capture approach to IGHV SHM detection can be integrated into broader sequencing panels, allowing broad CLL prognostication in a single molecular assay.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Somatic Hypermutation, Immunoglobulin , Humans , Alleles , High-Throughput Nucleotide Sequencing , Immunoglobulins , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Transcription Factors
10.
J Clin Pathol ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182402

ABSTRACT

AIMS: Genomic sequencing of lymphomas is under-represented in routine clinical testing despite having prognostic and predictive value. Clinical implementation is challenging due to a lack of consensus on reportable targets and a paucity of reference samples. We organised a cross-validation study of a lymphoma-tailored next-generation sequencing panel between two College of American Pathologists (CAP)-accredited clinical laboratories to mitigate these challenges. METHODS: A consensus for the genomic targets was discussed between the two institutes based on recurrence in diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and T-cell lymphomas. Using the same genomic targets, each laboratory ordered libraries independently and a cross-validation study was designed to exchange samples (8 cell lines and 22 clinical samples) and their FASTQ files. RESULTS: The sensitivity of the panel when comparing different library preparation and bioinformatic workflows was between 97% and 99% and specificity was 100% when a 5% limit of detection cut-off was applied. To evaluate how the current standards for variant classification of tumours apply to lymphomas, the Association for Molecular Pathology/American Society of Clinical Oncology/CAP and OncoKB classification systems were applied to the panel. The majority of variants were assigned a possibly actionable class or likely pathogenic due to more limited evidence in the literature. CONCLUSIONS: The cross-validation study highlights the benefits of sample and data exchange for clinical validation and provided a framework for reporting the findings in lymphoid malignancies.

11.
Aging Clin Exp Res ; 35(11): 2807-2820, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37910290

ABSTRACT

BACKGROUND: The fine visuomotor function is commonly impaired in several neurological conditions. However, there is a scarcity of reliable neuropsychological tools to assess such a critical domain. AIMS: The aim of this study is to explore the psychometric properties and provide normative data for the Visual-Motor Speed and Precision Test (VMSPT). RESULTS: Our normative sample included 220 participants (130 females) aged 18-86 years (mean education = 15.24 years, SD = 3.98). Results showed that raw VMSPT scores were affected by higher age and lower education. No effect of sex or handedness was shown. Age- and education-based norms were provided. VMSPT exhibited weak-to-strong correlations with well-known neuropsychological tests, encompassing a wide range of cognitive domains of clinical relevance. By gradually intensifying the cognitive demands, the test becomes an indirect, performance-oriented measure of executive functioning. Finally, VMSPT seems proficient in capturing the speed-accuracy trade-off typically observed in the aging population. CONCLUSIONS: This study proposes the initial standardization of a versatile, time-efficient, and cost-effective neuropsychological tool for assessing fine visuomotor coordination. We propose renaming the VMSPT as the more approachable "Little Circles Test" (LCT).


Subject(s)
Aging , Executive Function , Female , Humans , Aged , Neuropsychological Tests , Educational Status , Cognition
12.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961641

ABSTRACT

Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer, but its genomic consequences have been difficult to study using short-read technologies. To resolve the dysregulation associated with HPV integration, we performed long-read sequencing on 63 cervical cancer genomes. We identified six categories of integration events based on HPV-human genomic structures. Of all HPV integrants, defined as two HPV-human breakpoints bridged by an HPV sequence, 24% contained variable copies of HPV between the breakpoints, a phenomenon we termed heterologous integration. Analysis of DNA methylation within and in proximity to the HPV genome at individual integration events revealed relationships between methylation status of the integrant and its orientation and structure. Dysregulation of the human epigenome and neighboring gene expression in cis with the HPV-integrated allele was observed over megabase-ranges of the genome. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.

13.
Cancer Cell ; 41(12): 2117-2135.e12, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37977148

ABSTRACT

Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Child , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Prognosis , Recurrence
14.
NPJ Precis Oncol ; 7(1): 73, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558751

ABSTRACT

Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Scorehi) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment.

15.
Biotechniques ; 75(2): 47-55, 2023 08.
Article in English | MEDLINE | ID: mdl-37551834

ABSTRACT

High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation.


Subject(s)
DNA , RNA , RNA/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing/methods
16.
J Clin Oncol ; 41(25): 4164-4177, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37319384

ABSTRACT

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here, we sought to confirm the relationship between relapse timing and outcomes after second-line (immuno)chemotherapy and determine the evolutionary dynamics that underpin that relationship. PATIENTS AND METHODS: Outcomes were examined in a population-based cohort of 221 patients with DLBCL who experienced progression/relapse after frontline treatment and were treated with second-line (immuno)chemotherapy with an intention-to-treat with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a partially overlapping cohort of 129 patients underwent molecular characterization, including whole-genome or whole-exome sequencing in 73 patients. RESULTS: Outcomes to second-line therapy and ASCT are superior for late relapse (>2 years postdiagnosis) versus primary refractory (<9 months) or early relapse (9-24 months). Diagnostic and relapse biopsies were mostly concordant for cell-of-origin classification and genetics-based subgroup. Despite this concordance, the number of mutations exclusive to each biopsy increased with time since diagnosis, and late relapses shared few mutations with their diagnostic counterpart, demonstrating a branching evolution pattern. In patients with highly divergent tumors, many of the same genes acquired new mutations independently in each tumor, suggesting that the earliest mutations in a shared precursor cell constrain tumor evolution toward the same genetics-based subgroups at both diagnosis and relapse. CONCLUSION: These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease and have implications for optimal patient management.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Humans , Neoplasm Recurrence, Local/drug therapy , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Chronic Disease , Transplantation, Autologous , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
17.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37326978

ABSTRACT

SUMMARY: Mapping genetic interactions and essentiality networks in human cell lines has been used to identify vulnerabilities of cells carrying specific genetic alterations and to associate novel functions to genes, respectively. In vitro and in vivo genetic screens to decipher these networks are resource-intensive, limiting the throughput of samples that can be analyzed. In this application note, we provide an R package we call Genetic inteRaction and EssenTiality neTwork mApper (GRETTA). GRETTA is an accessible tool for in silico genetic interaction screens and essentiality network analyses using publicly available data, requiring only basic R programming knowledge. AVAILABILITY AND IMPLEMENTATION: The R package, GRETTA, is licensed under GNU General Public License v3.0 and freely available at https://github.com/ytakemon/GRETTA and https://doi.org/10.5281/zenodo.6940757, with documentation and tutorial. A Singularity container is also available at https://cloud.sylabs.io/library/ytakemon/gretta/gretta.


Subject(s)
Software , Humans , Mutation
18.
Cancers (Basel) ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37345142

ABSTRACT

CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.

19.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298494

ABSTRACT

Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.


Subject(s)
Neoplasms , Viruses , Humans , Oncogenic Viruses/genetics , Epigenome , Neoplasms/pathology , Epigenesis, Genetic , DNA Methylation
20.
Front Psychol ; 14: 1121251, 2023.
Article in English | MEDLINE | ID: mdl-37063521

ABSTRACT

Background: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms. The latter mainly include affective, sleep, and cognitive deficits. Non-demented PD patients often demonstrate impairments in several executive domains following neuropsychological evaluation. The current pilot study aims at assessing the discriminatory power of the Frontal Assessment Battery-15 (FAB15) in differentiating (i) non-demented PD patients and healthy controls and (ii) PD patients with more and less pronounced motor symptoms. Methods: Thirty-nine non-demented early-stage PD patients in the "on" dopamine state (26 females, mean age = 64.51 years, SD = 6.47, mean disease duration = 5.49 years, SD = 2.28) and 39 healthy participants (24 females, mean age = 62.60 years, SD = 5.51) were included in the study. All participants completed the FAB15. Motor symptoms of PD patients were quantified via the Unified Parkinson's Disease Rating Scale-Part III (UPDRS-Part III) and Hoehn and Yahr staging scale (H&Y). Results: The FAB15 score, adjusted according to normative data for sex, age, and education, proved to be sufficiently able to discriminate PD patients from healthy controls (AUC = 0.69 [95% CI 0.60-0.75], SE = 0.06, p = 0.04, optimal cutoff = 11.29). Conversely, the battery lacked sufficient discriminative capability to differentiate PD patients based on the severity of motor symptoms. Conclusion: The FAB15 may be a valid tool for distinguishing PD patients from healthy controls. However, it might be less sensitive in identifying clinical phenotypes characterized by visuospatial impairments resulting from posteroparietal and/or temporal dysfunctions. In line with previous evidence, the battery demonstrated to be not expendable in the clinical practice for monitoring the severity of PD-related motor symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL