Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(5): 1446-1456, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36780359

ABSTRACT

We present a novel multiscale approach to study the electronic structure of open shell molecular systems embedded in an external environment. The method is based on the coupling of multilevel Hartree-Fock (MLHF) and Density Functional Theory (MLDFT), suitably extended to the unrestricted formalism, to Molecular Mechanics (MM) force fields (FF). Within the ML region, the system is divided into active and inactive parts, thus describing the most relevant interactions (electrostatic, polarization, and Pauli repulsion) at the quantum level. The surrounding MM part, which is formulated in terms of nonpolarizable or polarizable FFs, permits a physically consistent treatment of long-range electrostatics and polarization effects. The approach is extended to the calculation of hyperfine coupling constants and applied to selected nitroxyl radicals in an aqueous solution.

2.
J Chem Theory Comput ; 17(2): 791-803, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33449681

ABSTRACT

Following recent developments in multilevel embedding methods, we introduce a novel density matrix-based multilevel approach within the framework of density functional theory (DFT). In this multilevel DFT, the system is partitioned in an active and an inactive fragment, and all interactions are retained between the two parts. The decomposition of the total system is performed upon the density matrix. The orthogonality between the two parts is maintained by solving the Kohn-Sham equations in the MO basis for the active part only, while keeping the inactive density matrix frozen. This results in the reduction of computational cost. We outline the theory and implementation and discuss the differences and similarities with state-of-the-art DFT embedding methods. We present applications to aqueous solutions of methyloxirane and glycidol.

3.
J Chem Theory Comput ; 16(11): 6993-7004, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33058671

ABSTRACT

We present a computational study of polarizabilities and hyperpolarizabilities of organic molecules in aqueous solutions, focusing on solute-water interactions and the way they affect a molecule's linear and non-linear electric response properties. We employ a polarizable quantum mechanics/molecular mechanics (QM/MM) computational model that treats the solute at the QM level while the solvent is treated classically using a force field that includes polarizable charges and dipoles, which dynamically respond to the solute's quantum-mechanical electron density. Quantum confinement effects are also treated by means of a recently implemented method that endows solvent molecules with a parametric electron density, which exerts Pauli repulsion forces upon the solute. By applying the method to a set of aromatic molecules in solution we show that, for both polarizabilities and first hyperpolarizabilities, observed solution values are the result of a delicate balance between electrostatics, hydrogen-bonding, and non-electrostatic solute solvent interactions.

4.
ACS Omega ; 4(1): 1344-1353, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459403

ABSTRACT

The influence of weak interactions on the donation/back-donation bond components in the complex [(NHC)Au(SeU)]+ (NHC = N-heterocyclic carbene; SeU = selenourea) has been studied by coupling experimental and theoretical techniques. In particular, NMR 1H and pulsed-field gradient spin-echo titrations allowed us to characterize the hydrogen bond (HB) between the -NH2 moieties of SeU and the anions PF6 - and ClO4 -, whereas 77Se NMR spectroscopy allowed us to characterize the Au-Se bond. Theoretically, the Au-Se and Au-C orbital interactions have been decomposed using the natural orbital for the chemical valence framework and the bond components quantified through the charge displacement analysis. This methodology provides the quantification of the Dewar-Chatt-Duncanson (DCD) components for the Au-C and Au-Se bonds in the absence and presence of the second-sphere HB. The results presented here show that the anion has a dual mode action: it modifies the conformation of the cation by ion pairing (and this already influences the DCD components) and it induces new polarization effects that depend on the relative anion/cation relative orientation. The perchlorate polarizes SeU, enhancing the Se → Au σ donation and the Au → C back-donation and depressing the C → Au σ donation. On the contrary, the hexafluorophosphate depresses both the Se → Au and C → Au σ donations.

SELECTION OF CITATIONS
SEARCH DETAIL