Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(4): e1011965, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630835

ABSTRACT

The efficient coding hypothesis posits that early sensory neurons transmit maximal information about sensory stimuli, given internal constraints. A central prediction of this theory is that neurons should preferentially encode stimuli that are most surprising. Previous studies suggest this may be the case in early visual areas, where many neurons respond strongly to rare or surprising stimuli. For example, previous research showed that when presented with a rhythmic sequence of full-field flashes, many retinal ganglion cells (RGCs) respond strongly at the instance the flash sequence stops, and when another flash would be expected. This phenomenon is called the 'omitted stimulus response'. However, it is not known whether the responses of these cells varies in a graded way depending on the level of stimulus surprise. To investigate this, we presented retinal neurons with extended sequences of stochastic flashes. With this stimulus, the surprise associated with a particular flash/silence, could be quantified analytically, and varied in a graded manner depending on the previous sequences of flashes and silences. Interestingly, we found that RGC responses could be well explained by a simple normative model, which described how they optimally combined their prior expectations and recent stimulus history, so as to encode surprise. Further, much of the diversity in RGC responses could be explained by the model, due to the different prior expectations that different neurons had about the stimulus statistics. These results suggest that even as early as the retina many cells encode surprise, relative to their own, internally generated expectations.


Subject(s)
Models, Neurological , Photic Stimulation , Retinal Ganglion Cells , Retinal Ganglion Cells/physiology , Animals , Computational Biology
2.
Mol Ther Methods Clin Dev ; 31: 101107, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37868206

ABSTRACT

Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of inner retinal neurons is a promising avenue to restore vision in retinas having lost their photoreceptors. Expression of optogenetic proteins in surviving ganglion cells, the retinal output, allows them to take on the lost photoreceptive function. Nonetheless, this creates an exclusively ON retina by expression of depolarizing optogenetic proteins in all classes of ganglion cells, whereas a normal retina extracts several features from the visual scene, with different ganglion cells detecting light increase (ON) and light decrease (OFF). Refinement of this therapeutic strategy should thus aim at restoring these computations. Here we used a vector that targets gene expression to a specific interneuron of the retina called the AII amacrine cell. AII amacrine cells simultaneously activate the ON pathway and inhibit the OFF pathway. We show that the optogenetic stimulation of AII amacrine cells allows restoration of both ON and OFF responses in the retina, but also mediates other types of retinal processing such as sustained and transient responses. Targeting amacrine cells with optogenetics is thus a promising avenue to restore better retinal function and visual perception in patients suffering from retinal degeneration.

3.
Phys Rev E ; 108(2-1): 024406, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723816

ABSTRACT

Neural networks encode information through their collective spiking activity in response to external stimuli. This population response is noisy and strongly correlated, with a complex interplay between correlations induced by the stimulus, and correlations caused by shared noise. Understanding how these correlations affect information transmission has so far been limited to pairs or small groups of neurons, because the curse of dimensionality impedes the evaluation of mutual information in larger populations. Here, we develop a small-correlation expansion to compute the stimulus information carried by a large population of neurons, yielding interpretable analytical expressions in terms of the neurons' firing rates and pairwise correlations. We validate the approximation on synthetic data and demonstrate its applicability to electrophysiological recordings in the vertebrate retina, allowing us to quantify the effects of noise correlations between neurons and of memory in single neurons.


Subject(s)
Neural Networks, Computer , Neurons , Retina
4.
bioRxiv ; 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37609259

ABSTRACT

Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the adapted retinal output. By recording from the same retina while presenting many different natural movies, we see that the population structure, characterized by strong interactions, is consistent across both natural and synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between retinal ganglion cells and amacrine cells.

5.
J Neurophysiol ; 130(3): 706-718, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37584082

ABSTRACT

Classifying neurons in different types is still an open challenge. In the retina, recent works have taken advantage of the ability to record from a large number of cells to classify ganglion cells into different types based on functional information. Although the first attempts in this direction used the receptive field properties of each cell to classify them, more recent approaches have proposed to cluster ganglion cells directly based on their response to stimuli. These two approaches have not been compared directly. Here, we recorded the responses of a large number of ganglion cells and compared two methods for classifying them into functional groups, one based on the receptive field properties, and the other one using directly their responses to stimuli with various temporal frequencies. We show that the response-based approach allows separation of more types than the receptive field-based method, leading to a better classification. This better granularity is due to the fact that the response-based method takes into account not only the linear part of ganglion cell function but also some of the nonlinearities. A careful characterization of nonlinear processing is thus key to allowing functional classification of sensory neurons.NEW & NOTEWORTHY In the retina, ganglion cells can be classified based on their response to visual stimuli. Although some methods are based on the modeling of receptive fields, others rely on responses to characteristic stimuli. We compared these two classes of methods and show that the latter provides a higher discrimination performance. We also show that this gain arises from the ability to account for the nonlinear behavior of neurons.


Subject(s)
Retina , Retinal Ganglion Cells , Retinal Ganglion Cells/physiology , Retina/physiology
6.
Nat Nanotechnol ; 18(6): 667-676, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37012508

ABSTRACT

Remote and precisely controlled activation of the brain is a fundamental challenge in the development of brain-machine interfaces for neurological treatments. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, especially after expressing ultrasound-sensitive proteins. But so far, no study has described an ultrasound-mediated activation strategy whose spatiotemporal resolution and acoustic intensity are compatible with the mandatory needs of brain-machine interfaces, particularly for visual restoration. Here we combined the expression of large-conductance mechanosensitive ion channels with uncustomary high-frequency ultrasonic stimulation to activate retinal or cortical neurons over millisecond durations at a spatiotemporal resolution and acoustic energy deposit compatible with vision restoration. The in vivo sonogenetic activation of the visual cortex generated a behaviour associated with light perception. Our findings demonstrate that sonogenetics can deliver millisecond pattern presentations via an approach less invasive than current brain-machine interfaces for visual restoration.


Subject(s)
Ectopic Gene Expression , Visual Cortex , Neurons/metabolism , Retina , Vision, Ocular
7.
Cell Rep Methods ; 2(8): 100268, 2022 08 22.
Article in English | MEDLINE | ID: mdl-36046629

ABSTRACT

We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.


Subject(s)
Holography , Mice , Animals , Holography/methods , Photons , Retinal Bipolar Cells , Optogenetics/methods
8.
Nat Commun ; 13(1): 5556, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138007

ABSTRACT

Retina ganglion cells extract specific features from natural scenes and send this information to the brain. In particular, they respond to local light increase (ON responses), and/or decrease (OFF). However, it is unclear if this ON-OFF selectivity, characterized with synthetic stimuli, is maintained under natural scene stimulation. Here we recorded ganglion cell responses to natural images slightly perturbed by random noise patterns to determine their selectivity during natural stimulation. The ON-OFF selectivity strongly depended on the specific image. A single ganglion cell can signal luminance increase for one image, and luminance decrease for another. Modeling and experiments showed that this resulted from the non-linear combination of different retinal pathways. Despite the versatility of the ON-OFF selectivity, a systematic analysis demonstrated that contrast was reliably encoded in these responses. Our perturbative approach uncovered the selectivity of retinal ganglion cells to more complex features than initially thought.


Subject(s)
Retina , Retinal Ganglion Cells , Photic Stimulation , Retina/physiology , Retinal Ganglion Cells/physiology
9.
Adv Neural Inf Process Syst ; 35: 11355-11368, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37362058

ABSTRACT

Much of sensory neuroscience focuses on presenting stimuli that are chosen by the experimenter because they are parametric and easy to sample and are thought to be behaviorally relevant to the organism. However, it is not generally known what these relevant features are in complex, natural scenes. This work focuses on using the retinal encoding of natural movies to determine the presumably behaviorally-relevant features that the brain represents. It is prohibitive to parameterize a natural movie and its respective retinal encoding fully. We use time within a natural movie as a proxy for the whole suite of features evolving across the scene. We then use a task-agnostic deep architecture, an encoder-decoder, to model the retinal encoding process and characterize its representation of "time in the natural scene" in a compressed latent space. In our end-to-end training, an encoder learns a compressed latent representation from a large population of salamander retinal ganglion cells responding to natural movies, while a decoder samples from this compressed latent space to generate the appropriate future movie frame. By comparing latent representations of retinal activity from three movies, we find that the retina has a generalizable encoding for time in the natural scene: the precise, low-dimensional representation of time learned from one movie can be used to represent time in a different movie, with up to 17 ms resolution. We then show that static textures and velocity features of a natural movie are synergistic. The retina simultaneously encodes both to establishes a generalizable, low-dimensional representation of time in the natural scene.

10.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613663

ABSTRACT

Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.


Subject(s)
Genetic Diseases, X-Linked , Myopia , Night Blindness , Mice , Animals , Electroretinography/methods , Night Blindness/genetics , Retina , Myopia/genetics , Genetic Diseases, X-Linked/genetics , Receptors, G-Protein-Coupled/genetics
11.
PLoS One ; 16(4): e0248940, 2021.
Article in English | MEDLINE | ID: mdl-33857170

ABSTRACT

A central goal in systems neuroscience is to understand the functions performed by neural circuits. Previous top-down models addressed this question by comparing the behaviour of an ideal model circuit, optimised to perform a given function, with neural recordings. However, this requires guessing in advance what function is being performed, which may not be possible for many neural systems. To address this, we propose an inverse reinforcement learning (RL) framework for inferring the function performed by a neural network from data. We assume that the responses of each neuron in a network are optimised so as to drive the network towards 'rewarded' states, that are desirable for performing a given function. We then show how one can use inverse RL to infer the reward function optimised by the network from observing its responses. This inferred reward function can be used to predict how the neural network should adapt its dynamics to perform the same function when the external environment or network structure changes. This could lead to theoretical predictions about how neural network dynamics adapt to deal with cell death and/or varying sensory stimulus statistics.


Subject(s)
Models, Neurological , Nerve Net , Reinforcement, Psychology , Animals , Decision Making , Humans , Learning , Reward
12.
Commun Biol ; 4(1): 125, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504896

ABSTRACT

Vision restoration is an ideal medical application for optogenetics, because the eye provides direct optical access to the retina for stimulation. Optogenetic therapy could be used for diseases involving photoreceptor degeneration, such as retinitis pigmentosa or age-related macular degeneration. We describe here the selection, in non-human primates, of a specific optogenetic construct currently tested in a clinical trial. We used the microbial opsin ChrimsonR, and showed that the AAV2.7m8 vector had a higher transfection efficiency than AAV2 in retinal ganglion cells (RGCs) and that ChrimsonR fused to tdTomato (ChR-tdT) was expressed more efficiently than ChrimsonR. Light at 600 nm activated RGCs transfected with AAV2.7m8 ChR-tdT, from an irradiance of 1015 photons.cm-2.s-1. Vector doses of 5 × 1010 and 5 × 1011 vg/eye transfected up to 7000 RGCs/mm2 in the perifovea, with no significant immune reaction. We recorded RGC responses from a stimulus duration of 1 ms upwards. When using the recorded activity to decode stimulus information, we obtained an estimated visual acuity of 20/249, above the level of legal blindness (20/400). These results lay the groundwork for the ongoing clinical trial with the AAV2.7m8 - ChR-tdT vector for vision restoration in patients with retinitis pigmentosa.


Subject(s)
Optogenetics , Photic Stimulation , Retinal Degeneration/therapy , Vision, Ocular/physiology , Animals , Equipment and Supplies , Female , Humans , Macaca fascicularis , Male , Optogenetics/instrumentation , Optogenetics/methods , Pattern Recognition, Visual/physiology , Photic Stimulation/instrumentation , Photic Stimulation/methods , Primates , Retinal Degeneration/physiopathology , Retinal Degeneration/rehabilitation , Therapies, Investigational/instrumentation , Therapies, Investigational/methods
13.
PLoS Comput Biol ; 17(1): e1008501, 2021 01.
Article in English | MEDLINE | ID: mdl-33507938

ABSTRACT

A major goal in neuroscience is to understand how populations of neurons code for stimuli or actions. While the number of neurons that can be recorded simultaneously is increasing at a fast pace, in most cases these recordings cannot access a complete population: some neurons that carry relevant information remain unrecorded. In particular, it is hard to simultaneously record all the neurons of the same type in a given area. Recent progress have made possible to profile each recorded neuron in a given area thanks to genetic and physiological tools, and to pool together recordings from neurons of the same type across different experimental sessions. However, it is unclear how to infer the activity of a full population of neurons of the same type from these sequential recordings. Neural networks exhibit collective behaviour, e.g. noise correlations and synchronous activity, that are not directly captured by a conditionally-independent model that would just put together the spike trains from sequential recordings. Here we show that we can infer the activity of a full population of retina ganglion cells from sequential recordings, using a novel method based on copula distributions and maximum entropy modeling. From just the spiking response of each ganglion cell to a repeated stimulus, and a few pairwise recordings, we could predict the noise correlations using copulas, and then the full activity of a large population of ganglion cells of the same type using maximum entropy modeling. Remarkably, we could generalize to predict the population responses to different stimuli with similar light conditions and even to different experiments. We could therefore use our method to construct a very large population merging cells' responses from different experiments. We predicted that synchronous activity in ganglion cell populations saturates only for patches larger than 1.5mm in radius, beyond what is today experimentally accessible.


Subject(s)
Action Potentials/physiology , Models, Neurological , Nerve Net , Neurons/physiology , Animals , Computational Biology , Nerve Net/cytology , Nerve Net/physiology , Rats , Retinal Ganglion Cells/physiology
14.
PLoS Comput Biol ; 16(7): e1007857, 2020 07.
Article in English | MEDLINE | ID: mdl-32667921

ABSTRACT

In many cases of inherited retinal degenerations, ganglion cells are spared despite photoreceptor cell death, making it possible to stimulate them to restore visual function. Several studies have shown that it is possible to express an optogenetic protein in ganglion cells and make them light sensitive, a promising strategy to restore vision. However the spatial resolution of optogenetically-reactivated retinas has rarely been measured, especially in the primate. Since the optogenetic protein is also expressed in axons, it is unclear if these neurons will only be sensitive to the stimulation of a small region covering their somas and dendrites, or if they will also respond to any stimulation overlapping with their axon, dramatically impairing spatial resolution. Here we recorded responses of mouse and macaque retinas to random checkerboard patterns following an in vivo optogenetic therapy. We show that optogenetically activated ganglion cells are each sensitive to a small region of visual space. A simple model based on this small receptive field predicted accurately their responses to complex stimuli. From this model, we simulated how the entire population of light sensitive ganglion cells would respond to letters of different sizes. We then estimated the maximal acuity expected by a patient, assuming it could make an optimal use of the information delivered by this reactivated retina. The obtained acuity is above the limit of legal blindness. Our model also makes interesting predictions on how acuity might vary upon changing the therapeutic strategy, assuming an optimal use of the information present in the retinal activity. Optogenetic therapy could thus potentially lead to high resolution vision, under conditions that our model helps to determinine.


Subject(s)
Blindness , Optogenetics/methods , Retinal Ganglion Cells/physiology , Animals , Blindness/physiopathology , Blindness/therapy , Genetic Therapy , Macaca , Mice , Models, Biological , Retina/physiology , Visual Acuity/physiology
15.
Sci Rep ; 9(1): 1859, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755684

ABSTRACT

During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During a particular phase of the retina development (stage II) these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. The underlying mechanisms of the spontaneous bursting and the transient excitability of immature SACs are not completely clear yet. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing V-gated calcium channels and hyperpolarizing V-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description.


Subject(s)
Models, Theoretical , Retina/embryology , Retinal Ganglion Cells/physiology , Algorithms , Amacrine Cells/physiology , Animals , Calcium/physiology , Calmodulin/physiology , Kinetics , Normal Distribution , Oscillometry , Potassium Channels/physiology , Retina/physiology , Visual Pathways/physiology
16.
Neural Comput ; 31(2): 233-269, 2019 02.
Article in English | MEDLINE | ID: mdl-30576613

ABSTRACT

The principles of neural encoding and computations are inherently collective and usually involve large populations of interacting neurons with highly correlated activities. While theories of neural function have long recognized the importance of collective effects in populations of neurons, only in the past two decades has it become possible to record from many cells simultaneously using advanced experimental techniques with single-spike resolution and to relate these correlations to function and behavior. This review focuses on the modeling and inference approaches that have been recently developed to describe the correlated spiking activity of populations of neurons. We cover a variety of models describing correlations between pairs of neurons, as well as between larger groups, synchronous or delayed in time, with or without the explicit influence of the stimulus, and including or not latent variables. We discuss the advantages and drawbacks or each method, as well as the computational challenges related to their application to recordings of ever larger populations.

17.
Phys Rev E ; 98(1-1): 012402, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110850

ABSTRACT

Maximum entropy models can be inferred from large datasets to uncover how collective dynamics emerge from local interactions. Here, such models are employed to investigate neurons recorded by multi-electrode arrays in the human and monkey cortex. Taking advantage of the separation of excitatory and inhibitory neuron types, we construct a model including this distinction. This approach allows us to shed light on differences between excitatory and inhibitory activity across different brain states such as wakefulness and deep sleep, in agreement with previous findings. Additionally, maximum entropy models can also unveil novel features of neuronal interactions, which are found to be dominated by pairwise interactions during wakefulness, but are population-wide during deep sleep. Overall, we demonstrate that maximum entropy models can be useful to analyze datasets with classified neuron types and to reveal the respective roles of excitatory and inhibitory neurons in organizing coherent dynamics in the cerebral cortex.


Subject(s)
Cerebral Cortex/physiology , Models, Neurological , Action Potentials , Animals , Entropy , Humans , Neurons/physiology
18.
Neural Comput ; 30(11): 3009-3036, 2018 11.
Article in English | MEDLINE | ID: mdl-30148708

ABSTRACT

Neural noise sets a limit to information transmission in sensory systems. In several areas, the spiking response (to a repeated stimulus) has shown a higher degree of regularity than predicted by a Poisson process. However, a simple model to explain this low variability is still lacking. Here we introduce a new model, with a correction to Poisson statistics, that can accurately predict the regularity of neural spike trains in response to a repeated stimulus. The model has only two parameters but can reproduce the observed variability in retinal recordings in various conditions. We show analytically why this approximation can work. In a model of the spike-emitting process where a refractory period is assumed, we derive that our simple correction can well approximate the spike train statistics over a broad range of firing rates. Our model can be easily plugged to stimulus processing models, like a linear-nonlinear model or its generalizations, to replace the Poisson spike train hypothesis that is commonly assumed. It estimates the amount of information transmitted much more accurately than Poisson models in retinal recordings. Thanks to its simplicity, this model has the potential to explain low variability in other areas.


Subject(s)
Models, Neurological , Retinal Ganglion Cells/physiology , Animals , Nonlinear Dynamics , Rats
19.
PLoS Comput Biol ; 14(5): e1006057, 2018 05.
Article in English | MEDLINE | ID: mdl-29746463

ABSTRACT

Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed "pixel-by-pixel". We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains.


Subject(s)
Action Potentials/physiology , Computational Biology/methods , Models, Neurological , Retina/physiology , Animals , Male , Neural Networks, Computer , Nonlinear Dynamics , Rats , Rats, Long-Evans
20.
Proc Natl Acad Sci U S A ; 115(13): 3267-3272, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531065

ABSTRACT

The brain has no direct access to physical stimuli but only to the spiking activity evoked in sensory organs. It is unclear how the brain can learn representations of the stimuli based on those noisy, correlated responses alone. Here we show how to build an accurate distance map of responses solely from the structure of the population activity of retinal ganglion cells. We introduce the Temporal Restricted Boltzmann Machine to learn the spatiotemporal structure of the population activity and use this model to define a distance between spike trains. We show that this metric outperforms existing neural distances at discriminating pairs of stimuli that are barely distinguishable. The proposed method provides a generic and biologically plausible way to learn to associate similar stimuli based on their spiking responses, without any other knowledge of these stimuli.


Subject(s)
Action Potentials/physiology , Algorithms , Brain/physiology , Learning/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...