Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 930: 172754, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677419

ABSTRACT

Grasslands are essential habitats for preserving arthropod communities in agricultural landscapes. The environmental state of grassland, their farming practices, and land cover heterogeneity in landscape around grassland are three factors that influence ground-dwelling grassland arthropod communities. However, the impact of the intensity of farming practices at the landscape scale has not yet been fully explored. In this study, (i) we studied complex relationships between environmental variables that describe the local conditions (i.e., grassland environmental state and farming practices) and land cover heterogeneity (i.e., land cover and landscape-wide intensity) of our study area in north-east France; and (ii) estimated the relative effect weight of landscape-wide intensity compared to other local and landscape variables on arthropod communities. We identified 14 taxonomic families, with Lycosidae, Carabidae and Staphylinidae as the families most represented in communities. We have highlighted a positive correlation between the different variables of landscape-wide intensity, as well as a positive correlation between sampled grassland intensity and the quantity of grassland in the landscape. Using Partial Least Squares Path Modelling (PLS-PM) analysis, we observed a positive effect of landscape-wide intensity on arthropod abundance-activity in grassland, indicating a potential concentration effect in the grasslands surrounded by an intensive landscape. Also, we have shown that the effect of landscape-wide intensity was at least as strong as that of other local and landscape variables. Our study is one of the first to consider land cover and farming practices simultaneously at the landscape scale. We demonstrate the importance of considering farming practices at the landscape scale to explain the state of ground-dwelling arthropod communities, and the need to take them into account when designing landscapes that are favourable to biodiversity. We argue that further studies are needed to explain the mechanisms involved in the relationship between arthropod communities and farming practices at the landscape scale.


Subject(s)
Agriculture , Arthropods , Grassland , Animals , Agriculture/methods , France , Biodiversity , Environmental Monitoring/methods , Ecosystem
2.
Proc Biol Sci ; 291(2014): 20232383, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38196355

ABSTRACT

Natural pest and weed regulation are essential for agricultural production, but the spatial distribution of natural enemies within crop fields and its drivers are mostly unknown. Using 28 datasets comprising 1204 study sites across eight Western and Central European countries, we performed a quantitative synthesis of carabid richness, activity densities and functional traits in relation to field edges (i.e. distance functions). We show that distance functions of carabids strongly depend on carabid functional traits, crop type and, to a lesser extent, adjacent non-crop habitats. Richness of both carnivores and granivores, and activity densities of small and granivorous species decreased towards field interiors, whereas the densities of large species increased. We found strong distance decays in maize and vegetables whereas richness and densities remained more stable in cereals, oilseed crops and legumes. We conclude that carabid assemblages in agricultural landscapes are driven by the complex interplay of crop types, adjacent non-crop habitats and further landscape parameters with great potential for targeted agroecological management. In particular, our synthesis indicates that a higher edge-interior ratio can counter the distance decay of carabid richness per field and thus likely benefits natural pest and weed regulation, hence contributing to agricultural sustainability.


Subject(s)
Agriculture , Fabaceae , Crops, Agricultural , Europe , Phenotype
4.
Sci Total Environ ; 822: 153569, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35114245

ABSTRACT

Intensive agriculture has profoundly altered biodiversity and trophic relationships in agricultural landscapes, leading to the deterioration of many ecosystem services such as pollination or biological control. Information on which spatio-temporal factors are simultaneously affecting crop pests and their natural enemies is required to improve conservation biological control practices. We conducted a study in 80 winter wheat crop fields distributed in three regions of North-western Europe (Brittany, Hauts-de-France and Wallonia), along intra-regional gradients of landscape complexity. Five taxa of major crop pests (aphids and slugs) and natural enemies (spiders, carabids, and parasitoids) were sampled three times a year, for two consecutive years. We analysed the influence of regional (meteorology), landscape (structure in both the years n and n-1) and local factors (hedge or grass strip field boundaries, and distance to boundary) on the abundance and species richness of crop-dwelling organisms, as proxies of the service/disservice they provide. Firstly, there was higher biocontrol potential in areas with mild winter climatic conditions. Secondly, natural enemy communities were less diverse and had lower abundances in landscapes with high crop and wooded continuities (sum of interconnected crop or wood surfaces), contrary to slugs and aphids. Finally, field boundaries with grass strips were more favourable to spiders and carabids than boundaries formed by hedges, while the opposite was found for crop pests, with the latter being less abundant towards the centre of the fields. We also revealed temporal modulation-and sometimes reversion-of the impact of local elements on crop biodiversity. To some extent, these results cause controversy because they show that hedgerows and woodlots should not be the unique cornerstones of agro-ecological landscape design strategies. We point out that combining woody and grassy habitats to take full advantage of the features and ecosystem services they both provide (biological pest control, windbreak effect, soil stabilization) may promote sustainable agricultural ecosystems. It may be possible to both reduce pest pressure and promote natural enemies by accounting for taxa-specific antagonistic responses to multi-scale environmental characteristics.


Subject(s)
Ecosystem , Spiders , Agriculture , Animals , Biodiversity , Crops, Agricultural/physiology , Farms , Pest Control, Biological/methods
5.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33725415

ABSTRACT

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Subject(s)
Climate Change , Microclimate , Biodiversity , Ecosystem , Forests , Trees
6.
Sci Rep ; 10(1): 6798, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321948

ABSTRACT

Sustainable land-use planning should consider large-scale landscape connectivity. Commonly-used species-specific connectivity models are difficult to generalize for a wide range of taxa. In the context of multi-functional land-use planning, there is growing interest in species-agnostic approaches, modelling connectivity as a function of human landscape modification. We propose a conceptual framework, apply it to model connectivity as current density across Alberta, Canada, and assess map sensitivity to modelling decisions. We directly compared the uncertainty related to (1) the definition of the degree of human modification, (2) the decision whether water bodies are considered barriers to movement, and (3) the scaling function used to translate degree of human modification into resistance values. Connectivity maps were most sensitive to the consideration of water as barrier to movement, followed by the choice of scaling function, whereas maps were more robust to different conceptualizations of the degree of human modification. We observed higher concordance among cells with high (standardized) current density values than among cells with low values, which supports the identification of cells contributing to larger-scale connectivity based on a cut-off value. We conclude that every parameter in species-agnostic connectivity modelling requires attention, not only the definition of often-criticized expert-based degrees of human modification.

SELECTION OF CITATIONS
SEARCH DETAIL
...