Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 369(6507): 1110-1113, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32855337

ABSTRACT

The origin of Earth's water remains unknown. Enstatite chondrite (EC) meteorites have similar isotopic composition to terrestrial rocks and thus may be representative of the material that formed Earth. ECs are presumed to be devoid of water because they formed in the inner Solar System. Earth's water is therefore generally attributed to the late addition of a small fraction of hydrated materials, such as carbonaceous chondrite meteorites, which originated in the outer Solar System where water was more abundant. We show that EC meteorites contain sufficient hydrogen to have delivered to Earth at least three times the mass of water in its oceans. EC hydrogen and nitrogen isotopic compositions match those of Earth's mantle, so EC-like asteroids might have contributed these volatile elements to Earth's crust and mantle.

2.
Proc Natl Acad Sci U S A ; 116(47): 23461-23466, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31685614

ABSTRACT

Chondritic meteorites are composed of primitive components formed during the evolution of the Solar protoplanetary disk. The oldest of these components formed by condensation, yet little is known about their formation mechanism because of secondary heating processes that erased their primordial signature. Amoeboid Olivine Aggregates (AOAs) have never been melted and underwent minimal thermal annealing, implying they might have retained the conditions under which they condensed. We performed a multiisotope (O, Si, Mg) characterization of AOAs to constrain the conditions under which they condensed and the information they bear on the structure and evolution of the Solar protoplanetary disk. High-precision silicon isotopic measurements of 7 AOAs from weakly metamorphosed carbonaceous chondrites show large, mass-dependent, light Si isotope enrichments (-9‰ < δ30Si < -1‰). Based on physical modeling of condensation within the protoplanetary disk, we attribute these isotopic compositions to the rapid condensation of AOAs over timescales of days to weeks. The same AOAs show slightly positive δ25Mg that suggest that Mg isotopic homogenization occurred during thermal annealing without affecting Si isotopes. Such short condensation times for AOAs are inconsistent with disk transport timescales, indicating that AOAs, and likely other high-temperature condensates, formed during brief localized high-temperature events.

3.
Rapid Commun Mass Spectrom ; 33(20): 1589-1597, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31237970

ABSTRACT

RATIONALE: High-precision determination of silicon isotopes can be achieved by in situ multi-collector secondary ion mass spectrometry (MS-SIMS). The accuracy of the analyses is, however, sensitive to ion yields and instrumental mass fractionations (IMFs) induced by the analytical procedure. These effects vary from one instrument to another, with the analytical settings, and with the composition and nature of the sample. Because ion yields and IMF effects are not predictable and rely on empirical calibrations, high-accuracy analyses require suitable sets of standards. METHODS: Here, we document calibrations of ion yields and matrix effects in a set of 23 olivine standards and 3 low-Ca pyroxene for silicon isotopic measurements in both polarities using Cameca IMS 1270 E7 and IMS 1280 HR2 ion probes set with the cesium (Cs) or radiofrequency (RF) source. RESULTS: Silicon ion yields show (i) strong variations with the chemical composition, and (ii) an opposite behavior between the secondary positive and negative polarities. The magnitude of IMF along the fayalite-forsterite (olivine) series shows a complex behavior, increasing overall by ≈7‰ (secondary positive) and ≈15‰ (secondary negative) with increasing olivine Mg#. A drastic change in olivine IMF occurs at Mg# ≈ 70 in both polarities. The magnitude of IMF for low-Ca pyroxene from Mg# = 70-100 is almost constant in both polarities, i.e. ≈0.1‰ in secondary positive and ≈0.15‰ in secondary negative. The analytical uncertainties on individual analyses were ± 0.05-0.15‰ (2 S.E.) with both sources, and the external errors for each standard material were ≈ ±0.05-0.5‰ (2 S.E.) with the Cs source and ≈ ±0.03-0.15‰ (2 S.E.) with the RF source. CONCLUSIONS: The IMF effect of Si isotopes in silicates shows complex behaviors that vary with the chemistry and the settings of the instrument. We developed a suitable set of standards in order to perform high-accuracy in situ measurements of Si isotopes in olivine and low-Ca pyroxene characterized by varying chemical compositions by MC-SIMS.

4.
Meteorit Planet Sci ; 54(2): 395-414, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30828243

ABSTRACT

The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018). Here, we aim to evaluate the contribution of outer solar system (cometary-like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high-precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary-like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.

5.
Sci Adv ; 2(7): e1601001, 2016 07.
Article in English | MEDLINE | ID: mdl-27419237

ABSTRACT

Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system.


Subject(s)
Meteoroids , Solar System , Magnetics , Oxygen Isotopes/chemistry , Silicates/chemistry , Sulfides/chemistry , Sulfur Isotopes/chemistry
6.
Proc Natl Acad Sci U S A ; 112(23): 7129-34, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26039983

ABSTRACT

In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

7.
Proc Natl Acad Sci U S A ; 106(26): 10522-7, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19528640

ABSTRACT

Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (delta(15)N(AIR) = -310 +/- 20 per thousand), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (delta(15)N(AIR) = 4,900 +/- 300 per thousand). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies.


Subject(s)
Extraterrestrial Environment , Meteoroids , Solar System , Cosmic Dust , Hot Temperature , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Minerals/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nitrogen Isotopes/chemistry , Particle Size , Particulate Matter/chemistry , Silicates/chemistry , Spectrometry, X-Ray Emission
8.
Science ; 318(5849): 433-5, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17947578

ABSTRACT

To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history.

SELECTION OF CITATIONS
SEARCH DETAIL
...