Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antib Ther ; 7(2): 164-176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38933534

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.

2.
Microb Cell Fact ; 18(1): 119, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31269943

ABSTRACT

BACKGROUND: The yeast Pichia pastoris is a widely used host for the secretion of heterologous proteins. Despite being an efficient producer, we observed previously that certain recombinant proteins were mistargeted to the vacuole on their route to secretion. Simultaneous disruption of one vacuolar sorting pathway together with vacuolar proteases prevented this mis-sorting and resulted in higher levels of secreted heterologous protein. Inspired by the positive results, we now set out to investigate the influence of further parts of the vacuolar pathway, namely the Cvt-pathway and the homotypic fusion and protein sorting (HOPS) complex. RESULTS: Strains impaired in the Cvt pathway (∆atg11, ∆atg8) had no effect on secretion of the model protein carboxylesterase (CES), but resulted in lower secretion levels of the antibody fragment HyHEL-Fab. Disruption of genes involved in the HOPS complex led to vacuole-like compartments of the B category of vps mutants, which are characteristic for the deleted genes YPT7, VPS41 and VAM6. In particular ∆ypt7 and ∆vam6 strains showed an improvement in secreting the model proteins HyHEL-Fab and CES. Additional disruption of the vacuolar protease Pep4 and the potential protease Vps70 led to even further enhanced secretion in ∆ypt7 and ∆vam6 strains. Nevertheless, intracellular product accumulation was still observed. Therefore, the secretory route was strengthened by overexpression of early or late secretory genes in the vacuolar sorting mutants. Thereby, overexpression of Sbh1, a subunit of the ER translocation pore, significantly increased HyHEL-Fab secretion, leading up to fourfold higher extracellular Fab levels in the ∆ypt7 strain. The beneficial impact on protein secretion and the suitability of these strains for industrial applicability was confirmed in fed-batch cultivations. CONCLUSIONS: Disruption of genes involved in the HOPS complex, especially YPT7, has a great influence on the secretion of the two different model proteins HyHEL-Fab and CES. Therefore, disruption of HOPS genes shows a high potential to increase secretion of other recombinant proteins as well. Secretion of HyHEL-Fab was further enhanced when overexpressing secretion enhancing factors. As the positive effect was also present in fed-batch cultivations, these modifications likely have promising industrial relevance.


Subject(s)
Carboxylesterase/biosynthesis , Immunoglobulin Fab Fragments/biosynthesis , Pichia/metabolism , Recombinant Proteins/biosynthesis , Adaptor Proteins, Vesicular Transport/genetics , Gene Deletion , Genes, Fungal , Pichia/genetics , Protein Transport , Vacuoles/enzymology , rab GTP-Binding Proteins/genetics
3.
Biotechnol J ; 12(5)2017 May.
Article in English | MEDLINE | ID: mdl-28230321

ABSTRACT

The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Previous studies have shown that mis-sorting to the vacuole can be a bottleneck during production of recombinant secretory proteins in yeast, however, no information was available for P. pastoris. In this work the authors have therefore generated vps (vacuolar protein sorting) mutant strains disrupted in genes involved in the CORVET (class C core vacuole/endosome tethering) complex at the early stages of endosomal sorting. Both Δvps8 and Δvps21 strains contained lower extracellular amounts of heterologous carboxylesterase (CES) compared to the control strain, which could be attributed to a high proteolytic activity present in the supernatants of CORVET engineered strains due to rerouting of vacuolar proteases. Serine proteases were identified to be responsible for this proteolytic degradation by liquid chromatography-mass spectrometry and protease inhibitor assays. Deletion of the major cellular serine protease Prb1 in Δvps8 and Δvps21 strains did not only rescue the extracellular CES levels, but even outperformed the parental CES strain (56 and 80% higher yields, respectively). Further deletion of Ybr139W, another serine protease, did not show a further increase in secretion levels. Higher extracellular CES activity and low proteolytic activity were detected also in fed batch cultivation of Δvps21Δprb1 strains, thus confirming that modifying early steps in the vacuolar pathway has a positive impact on heterologous protein secretion.


Subject(s)
Carboxylesterase/genetics , Pichia/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics , Biotechnology/methods , Carboxylesterase/metabolism , Cytoplasmic Vesicles/genetics , Cytoplasmic Vesicles/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism
4.
N Biotechnol ; 37(Pt A): 24-38, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-27184617

ABSTRACT

Sustainable production of microbial polyhydroxyalkanoate (PHA) biopolyesters on a larger scale has to consider the "four magic e": economic, ethical, environmental, and engineering aspects. Moreover, sustainability of PHA production can be quantified by modern tools of Life Cycle Assessment. Economic issues are to a large extent affected by the applied production mode, downstream processing, and, most of all, by the selection of carbon-rich raw materials as feedstocks for PHA production by safe and naturally occurring wild type microorganisms. In order to comply with ethics, such raw materials should be used which do not interfere with human nutrition and animal feed supply chains, and shall be convertible towards accessible carbon feedstocks by simple methods of upstream processing. Examples were identified in carbon-rich waste materials from various industrial braches closely connected to food production. Therefore, the article shines a light on hetero-, mixo-, and autotrophic PHA production based on various industrial residues from different branches. Emphasis is devoted to the integration of PHA-production based on selected raw materials into the holistic patterns of sustainability; this encompasses the choice of new, powerful microbial production strains, non-hazardous, environmentally benign methods for PHA recovery, and reutilization of waste streams from the PHA production process itself.


Subject(s)
Polyhydroxyalkanoates/biosynthesis , Animals , Biofuels , Bioreactors/microbiology , Biotechnology , Food Industry , Genetic Engineering , Green Chemistry Technology , Humans , Industrial Microbiology , Industrial Waste , Microbial Consortia/genetics , Polyhydroxyalkanoates/chemistry , Whey
5.
Ultramicroscopy ; 163: 48-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26916079

ABSTRACT

Single-tilt scheme is nowadays the prevalent acquisition geometry in electron tomography and subtomogram averaging experiments. Being an incomplete scheme that induces ill-posedness in the sense of the X-ray or Radon transform inverse problem, it introduces a number of artifacts that directly influence the quality of tomographic reconstructions. Though individually described by different authors before, a systematic study of these acquisition geometry-related artifacts in one place and across representative set of reconstruction methods has not been, to our knowledge, performed before. Moreover, the effects of these artifacts on the reconstructed density are sometimes misinterpreted, attributing them to the wrong cause, especially if their effects accumulate. In this work, we systematically study the major artifacts of single-tilt geometry known as the missing wedge (incomplete projection set problem), the missing information and the specimen-level interior problem (long-object problem). First, we illustratively describe, using a unified terminology, how and why these artifacts arise and when they can be avoided. Next, we describe the effects of these artifacts on the reconstructions across all major classes of reconstruction methods, including newly-appeared methods like the Iterative Nonuniform fast Fourier transform based Reconstruction method (INFR) and the Progressive Stochastic Reconstruction Technique (PSRT). Finally, we draw conclusions and recommendations on numerous points, especially regarding the mutual influence of the geometric artifacts, ability of different reconstruction methods to suppress them as well as implications to the interpretation of both electron tomography and subtomogram averaging experiments.

6.
Ultramicroscopy ; 161: 110-118, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26686659

ABSTRACT

We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing.

7.
J Struct Biol ; 189(3): 195-206, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25659894

ABSTRACT

Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.


Subject(s)
Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Stochastic Processes , Algorithms , Cryoelectron Microscopy/methods , Imaging, Three-Dimensional/methods , Macromolecular Substances/chemistry , Monte Carlo Method , Reproducibility of Results , Ribosomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...