Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 274: 116528, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38805938

ABSTRACT

Herein, we present a comprehensive review focusing on synthetic strategies, detailed structural analysis, and anticancer activity investigations of complexes following the general formula [LnM(µ-diphosphine)M'Lm] where M = group 8 metal; M' = any transition metal; µ-diphosphine = bridging ligand; Ln and Lm = ligand spheres). Both homo- and heteromultimetallic complexes will be discussed in detail. We review in vitro, in vivo and in silico anticancer activity investigations, in an attempt to draw comparisons between the various complexes and derive structure-activity relationships (SAR). This review solely focuses on complexes falling under the general formula stated above that have been studied for their anticancer activities, other complexes falling into that scheme but which have not undergone anticancer testing are not included in this review. We compare the anticancer activities of these complexes to their mononuclear counterparts, and a positive control (cisplatin) when possible and present a summary of all existing data to date and attempt to draw some conclusions on the future development of these complexes.

2.
Beilstein J Org Chem ; 20: 41-51, 2024.
Article in English | MEDLINE | ID: mdl-38230356

ABSTRACT

The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV-vis absorptions peaking around 360 nm and exhibit a negative solvatochromism. An analysis of the kinetics of the zwitterion formation was performed for three Michael acceptors (acrylonitrile, methyl acrylate, and acrylamide) in two different solvents (chloroform and methanol). The results revealed the proton transfer step necessary to stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed.

3.
Chem Sci ; 14(33): 8956-8961, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37621423

ABSTRACT

The regioselective synthesis of germasila-adamantanes with the germanium atoms in the bridgehead positions is described starting from cyclic precursors by a cationic sila-Wagner-Meerwein (SWM) rearrangement reaction. The SWM rearrangement allows also a deliberate shift of germanium atoms from the periphery and within the cage structures into the bridgehead positions. This opens the possibility for a synthesis of germasila-adamantanes of defined germanium content and controlled regiochemistry. In the same way that sila-adamantane can be regarded as a molecular building block of elemental silicon, the germasila-adamantane molecules represent cutouts of silicon/germanium alloys.

4.
Inorg Chem ; 61(44): 17527-17536, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36281990

ABSTRACT

Utilizing a choice of α,ω-oligosilanylene diides, it is possible to synthesize a number of heterocyclosilanes with heteroelements of calcium, yttrium, and iron by metathesis reactions with respective metal halides CaI2, YCl3, and FeBr2. 29Si NMR spectroscopic analysis of the calcacyclosilanes suggests that these compounds retain a strong oligosilanylene dianion character, which is more pronounced than in the analogous magnesacyclosilanes. As the electronegativity of calcium lies between potassium and magnesium, silyl calcium reagents should be considered as building blocks with an attractive reactivity profile. Reaction of a 1,4-oligosilanylene diide with YCl3 gave the five-membered yttracyclosilane as an ate-complex with two chlorides still attached to the yttrium atom. Reaction of the obtained compound with two equivalents of NaCp led to another five-membered yttracyclosilane ate-complex with an yttracene fragment. When using a dianionic oligosilanylene ligand containing a siloxane unit, the siloxane oxygen acted as an additional coordination site for Ca and Y. When the same ligand was used to prepare a cyclic 1-ferra-4-oxatetrasilacyclohexane, an analogous transannular interaction between the iron and oxygen atoms is missing.


Subject(s)
Iron , Yttrium , Iron/chemistry , Yttrium/chemistry , Calcium/chemistry , Ligands , Siloxanes/chemistry , Oxygen
5.
Dalton Trans ; 50(46): 16945-16949, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34779457

ABSTRACT

Reaction of a 3,4-diphenylsilole with two neopentasilanyl groups attached to the 2- and 5-positions with one equivalent of KOtBu did not result in the expected silanide formation but yielded a silole allylic anion instead. The initially formed silanide added to a neighboring phenyl group, which then transfers a proton to the 2-position of the silole ring.

6.
ACS Omega ; 6(29): 19252-19268, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337263

ABSTRACT

Herein, we describe the synthesis, full spectroscopic characterization, DFT (density functional theory) calculations, and single-crystal X-ray diffraction analyses of a series of osmium arene σ-germyl, germanate, σ-stannyl, and stannate complexes, along with their cytotoxic (anticancer) investigations. The known dimer complexes [OsCl2(η6-C6H6)]2 (1) and [OsCl2(η6-p-cymene)]2 (2) were reacted with PPh3 to form the known mononuclear complex [OsCl2(η6-p-cymene)(PPh3)] (3) and the new complex [OsCl2(η6-C6H6)(PPh3)] (6); complex 3 was reacted with GeCl2·(dioxane) and SnCl2 to afford, by insertion into the Os-Cl bond, the neutral σ-germyl and stannyl complexes [OsCl(η6-p-cymene)(PPh3)(GeCl3)] (7) and [OsCl(η6-p-cymene)(PPh3)(SnCl3)] (11), respectively, as a mixture of enantiomers. Similarly, the reaction of complex 6 with GeCl2·(dioxane) afforded [OsCl(η6-C6H6)(PPh3)(GeCl3)] (9). Complex 2, upon reaction with 1,1-bis(diphenylphosphino)methane (dppm), formed a mixture of [OsCl2(η6-p-cymene)(κ1-dppm)] (4) and [Os(η6-p-cymene)(κ2-dppm)Cl]+Cl- (5) when prepared in acetonitrile and a mixture of 4 and the dinuclear complex [[OsCl2(η6-p-cymene)]2(µ-dppm)] (0) when prepared in dichloromethane. By utilizing either isolated 4 or a mixture of 4 and 5, the synthesis of κ2-dppm germanate and stannate salts, [OsCl(η6-p-cymene)(κ2-dppm)]+GeCl3 - (8) and [OsCl(η6-p-cymene)(κ2-dppm)]+SnCl3 - (10), were accomplished via halide-abstracting reactions with GeCl2·(dioxane) or SnCl2, respectively. All resulting complexes were characterized by means of multinuclear NMR, FT-IR, ESI-MS, and UV/Vis spectroscopy. X-ray diffraction analyses of 4, 8, 9, 10, and 11 were performed and are reported. DFT studies (B3LYP, basis set LANL2DZ for Os, and def2-TZVPP for Sn, Ge, Cl, P, C, and H) were performed on complex 9 and the benzene analogue of complex 11, 11-benzene, to evaluate the structural changes and the effects on the frontier molecular orbitals arising from the substitution of Ge for Sn. Finally, complexes 3 and 7-11 were investigated for potential anticancer activities considering cell cytotoxicity and apoptosis assays against Dalton's lymphoma (DL) and Ehrlich ascites carcinoma (EAC) malignant cancer cell lines. The complexes were also tested against healthy peripheral blood mononuclear cells (PBMCs). All cell lines were also treated with the reference drug cisplatin to draw a comparison with the results obtained from the reported complexes. The study was further corroborated with in silico molecular interaction simulations and a pharmacokinetic study.

7.
Inorg Chem ; 60(11): 8218-8226, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34033463

ABSTRACT

The reactions of a number of rare-earth (RE) trichlorides and an oligosilanylene diide containing a siloxane unit in the backbone in DME are described. The formed products of the type [(DME)4·K][(DME)·RE(Cl)2{Si(SiMe3)2SiMe2}2O] (RE = Y, La, Ce, Pr, Sm, Tb, Dy, and Er) are disilylated dichloro metalate complexes and include the first examples of Si-La and Si-Pr compounds as well as the first structurally characterized example of a Si-Dy complex. A most intriguing aspect of the synthesis of these complexes is that they offer entry into a systematic study of the still largely unexplored field of silyl RE complexes by the possibility of ligand exchange reactions under preservation of the Si-RE interaction. This was demonstrated by the conversion of [(DME)4·K][(DME)·RE(Cl)2{Si(SiMe3)2SiMe2}2O] to [(DME)4·K][Cp2Y{Si(SiMe3)2SiMe2}2O].

8.
Molecules ; 26(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466467

ABSTRACT

A number of mono- and dioligosilanylated silocanes were prepared. Compounds included silocanes with 1-methyl-1-tris(trimethylsilyl)silyl, 1,1-bis[tris(trimethylsilyl)silyl], and 1,1-bis[tris(trimethylsilyl)germyl] substitution pattern as well as two examples where the silocane silicon atom is part of a cyclosilane or oxacyclosilane ring. The mono-tris(trimethylsilyl)silylated compound could be converted to the respective silocanylbis(trimethylsilyl)silanides by reaction with KOtBu and in similar reactions the cyclosilanes were transformed to oligosilane-1,3-diides. However, the reaction of the 1,1-bis[tris(trimethylsilyl)silylated] silocane with two equivalents of KOtBu leads to the replacement of one tris(trimethylsilyl)silyl unit with a tert-butoxy substituent followed by silanide formation via KOtBu attack at one of the SiMe3 units of remaining tris(trimethylsilyl)silyl group. For none of the silylated silocanes, signs of hypercoordinative interaction between the nitrogen and silicon silocane atoms were detected either in the solid state. by single crystal XRD analysis, nor in solution by 29Si-NMR spectroscopy. This was further confirmed by cyclic voltammetry and a DFT study, which demonstrated that the N-Si distance in silocanes is not only dependent on the energy of a potential N-Si interaction, but also on steric factors and through-space interactions of the neighboring groups at Si and N, imposing the orientation of the pz(N) orbital relative to the N-Si-X axis.


Subject(s)
Organosilicon Compounds/chemistry , Silanes/chemistry , Silicon/chemistry
9.
Eur J Med Chem ; 204: 112613, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32784095

ABSTRACT

Herein, we review developments in synthesis, structure, and biological (anti-cancer) activities of 1,1-bis(diphenylphosphino)methane (dppm) bridged homo- and heterobimetallic systems of the type LmM(µ2-dppm)M'Ln (M and M' are transition metals which may be different or the same and Ln,m are co-ligands) since the first such reported bimetallic system in 1987 until the present time (2020). As the simplest diphosphine, dppm enables facile formation of bimetallic complexes, where, given the short spacer between the PPh2 groups, close spatial proximity of the metal centres is ensured. We concentrate on complexes bearing no M-M interaction and contrast biological activities of these complexes with mononuclear counterparts and positive control agents such as cisplatin, in an attempt to elucidate patterns in the biological activities of these complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Metals/chemistry , Phosphines/chemistry , Phosphines/pharmacology , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Ligands , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Phosphines/chemical synthesis , Salmonella typhimurium/drug effects , Spectrophotometry, Ultraviolet , Staphylococcus aureus/drug effects , Structure-Activity Relationship
10.
Chemistry ; 26(71): 17252-17260, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-32716090

ABSTRACT

Reaction of a 2,5-dilithiated silole with excess dichlorodimethylsilane gives the respective 2,5-bis(chlorodimethylsilyl) substituted silole. This compound can be converted to 2,5-bis(oligosilanyl) substituted siloles by addition of a suitable oligosilanide. In the UV spectra of the thus obtained compounds the lowest energy absorptions are bathochromically shifted compared to the absorptions of the two constituents, namely the 2,5-disilyl substituted silole and a trisilane. The bathochromic shift is interpreted as being caused by a mixed σ-conjugation/cross-hyperconjugation. This assumption is supported by TD-DFT calculations, which show a significant contribution from Si-Si bonds to the HOMO of the molecule.

11.
Eur J Med Chem ; 201: 112483, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32592914

ABSTRACT

While many examples of osmium complexes, as anti-cancer agents, have been reported and some reviews have been devoted to this topic, a particularly interesting and synthetically accessible sub-class of these compounds namely those bearing a π- bound arene and phosphane co-ligand have escaped review. These complexes have made a surprisingly late entry in the literature (2005) in terms of anti-cancer investigations. This is somewhat surprising considering the plethora of analogous complexes that have been reported for the lighter analogue, ruthenium. Herein we review all complexes, neutral and ionic, bearing the "(ƞ6-arene)Os(PR3)" moiety focusing on their synthesis, reactivity, structural features (by X-ray diffraction analysis) as well as anti-cancer biological activity. An attempt is made throughout the article to contrast these to each other and to analogous Ru systems, and a full summary of all existing in vitro biological data is presented.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Organophosphorus Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , Humans , Ligands , Organophosphorus Compounds/chemical synthesis , Osmium/chemistry
12.
Molecules ; 25(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183200

ABSTRACT

Starting out from dipotassium 1,5-oligosiloxanylene diide 2, a 3,7,10-trioxa-octasilabicyclo[3.3.3]undecane was prepared, which represents the third known example of this cage structure type. Reaction of 1,3-dichlorotetramethyldisiloxane with 1,1'-bis[bis(trimethylsilyl)potassiosilyl]ferrocene gave a ferrocenophane with a disiloxane containg bridge. The compound can be further derivatized by conversion into a 1,5-oligosilanyl diide. Reacting 1,5-oligosiloxanylene diide 2 with SnCl2 or GeCl2·dioxane in the presence of PMe3 gave cyclic disilylated tetrylene PMe3 adducts. Release of the base-free stannylene led to a dimerization process which gave a bicyclic distannene as the final product. Abstraction of the PMe3 from the cyclic disilylated germylene PMe3 adduct with B(C6F5)3 caused oxidative addition of the germylene into a para-C-F bond of Me3P·B(C6F5)3.


Subject(s)
Coordination Complexes/chemical synthesis , Ferrous Compounds/chemical synthesis , Metallocenes/chemical synthesis , Organotin Compounds/chemical synthesis , Silanes/chemistry , Siloxanes/chemistry , Coordination Complexes/chemistry , Cyclization , Molecular Conformation
13.
Molecules ; 25(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041130

ABSTRACT

The reactions of the PMe3 adduct of the silylated germylene [(Me3Si)3Si]2Ge: with GeCl2·dioxane were found to yield 1,1-migratory insertion products of GeCl2 into one or two Ge-Si bonds. In a related reaction, a germylene was inserted with tris(trimethylsilyl)silyl and vinyl substituents into a Ge-Cl bond of GeCl2. This was followed by intramolecular trimethylsilyl chloride elimination to another cyclic germylene PMe3 adduct. The reaction of the GeCl2 mono-insertion product (Me3Si)3SiGe:GeCl2Si(SiMe3)3 with Me3SiC≡CH gave a mixture of alkyne mono- and diinsertion products. While the reaction of a divinylgermylene with GeCl2·dioxane only results in the exchange of the dioxane of GeCl2 against the divinylgermylene as base, the reaction of [(Me3Si)3Si]2Ge: with one GeCl2·dioxane and three phenylacetylenes gives a trivinylated germane with a chlorogermylene attached to one of the vinyl units.


Subject(s)
Coordination Complexes/chemical synthesis , Dioxanes/chemistry , Phosphines/chemistry , Coordination Complexes/chemistry , Molecular Structure , Silanes
14.
Molecules ; 24(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652810

ABSTRACT

Our recent study on formal halide adducts of disilenes led to the investigation of the synthesis and properties of ß-fluoro- and chlorodisilanides. The reaction of the functionalized neopentasilanes (Me3Si)3SiSiPh2NEt2 and (Me3Si)3SiSiMe2OMe with KOtBu in the presence of 18-crown-6 provided access to structurally related ß-alkoxy- and amino-substituted disilanides. The obtained Et2NPh2Si(Me3Si)2SiK·18-crown-6 was converted to a magnesium silanide and further on to Et2NPh2Si(Me3Si)2Si-substituted ziroconocene and hafnocene chlorides. In addition, an example of a silanide containing both Et2NPh2Si and FPh2Si groups was prepared with moderate selectivity. Also, the analogous germanide Et2NPh2Si(Me3Si)2GeK·18-crown-6 could be obtained.


Subject(s)
Models, Molecular , Silanes/chemistry , Silanes/chemical synthesis , Alcohols/chemistry
15.
Inorg Chem ; 58(20): 14185-14192, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31580645

ABSTRACT

Extending the chemistry of disilene fluoride adducts studied earlier by us, we investigated the formation of 1,1-bis(trimethylsilyl)fluorodiphenylsilylsilanide, which was prepared by reaction of (Me3Si)3SiSiPh2F with KOtBu. The formed FPh2SiSi(Me3Si)2K displays distinctively different structural and spectroscopic features compared to the earlier reported F(Me3Si)2SiSi(SiMe3)2K. While the latter eliminates metal fluoride upon reaction with MgBr2, the respective magnesium silanide is formed from FPh2SiSi(Me3Si)2K. Reaction of (Me3Si)3SiSiPh2Cl with KOtBu proceeded similarly, but the formed ClPh2SiSi(Me3Si)2K easily undergoes potassium chloride elimination to the disilene Ph2Si═Si(SiMe3)2. Compared to F(Me3Si)2SiSi(SiMe3)2K, which can be regarded as a disilene fluoride adduct, structural, spectroscopic, and reactivity properties of FPh2SiSi(Me3Si)2K distinguish it as a ß-fluorodisilanide.

16.
Inorg Chem ; 58(10): 7107-7117, 2019 May 20.
Article in English | MEDLINE | ID: mdl-31066552

ABSTRACT

A number of paramagnetic silylated d1 group 4 metallates were prepared by reaction of potassium tris(trimethylsilyl)silanide with group 4 metallates of the type K[Cp2MCl2] (M = Ti, Zr, Hf). The outcomes of the reactions differ for all three metals. While for the hafnium case the expected complex [Cp2Hf{Si(SiMe3)3}2]- was obtained, the analogous titanium reaction led to a product with two Si(H)(SiMe3)2 ligands. The reaction with zirconium caused the formation of a dinuclear fulvalene bridged complex. The desired [Cp2Zr{Si(SiMe3)3}2]- could be obtained by reduction of Cp2Zr{Si(SiMe3)3}2 with potassium. In related reactions of potassium tris(trimethylsilyl)silanide with some lanthanidocenes Cp3Ln (Ln = Ce, Sm, Gd, Ho, Tm) complexes of the type [Cp3Ln Si(SiMe3)3]- with either [18-crown-6·K]+ or the complex ion [18-crown-6·K·Cp·K·18-crown-6] as counterions were obtained. Due to d1 or fn electron configuration, unambiguous characterization of all obtained complexes could only be achieved by single crystal XRD diffraction analysis.

17.
Organometallics ; 38(5): 1159-1167, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30880866

ABSTRACT

Synthesis of a number of disiloxane containing cyclo- and bicyclooligosilanes is described starting from the dipotassium 1,5-oligosiloxanylene diide derived from 1,3-bis[tris(trimethylsilyl)silyl]tetramethyldisiloxane. In addition, the use of this particular fragment as ligand for zinc and group 4 metallocene complexes was studied. Both types of compounds exhibit marked structural differences compared to related compounds containing Si-Si-Si units instead of the Si-O-Si fragment.

18.
Molecules ; 24(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626049

ABSTRACT

Metal induced stabilization of α-carbocations is well known for cobalt- and molybdenum complexed propargyl cations. The same principle also allows access to reactivity enhancement of metal coordinated halo- and hydrosilylalkynes. In a previous study, we have shown that coordination of oligosilanylalkynes to the dicobalthexacarbonyl fragment induces striking reactivity to the oligosilanyl part. The current paper extends this set of oligosilanylalkyne complexes to a number of new dicobalthexacarbonyl complexes but also to 1,2-bis(cyclopentadienyl)tetracarbonyldimolybdenum and (dippe)Ni complexes. NMR-Spectroscopic and crystallographic analysis of the obtained complexes clearly show that the dimetallic cobalt and molybdenum complexes cause rehybridization of the alkyne carbon atoms to sp³, while in the nickel complexes one π-bond of the alkyne is retained. For the dicobalt and dimolybdenum complexes, strongly deshielded 29Si NMR resonances of the attached silicon atoms indicate enhanced reactivity, whereas the 29Si NMR shifts of the respective nickel complexes are similar to that of respective vinylsilanes.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Molecular Structure , Molybdenum/chemistry , Nickel/chemistry , Spectrum Analysis , Alkynes/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular
19.
ACS Omega ; 3(8): 10317-10330, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30198007

ABSTRACT

The hypercoordinated silicon chlorides ClSi[(o-OC6H4)3N] (3) and ClSi[(OC6H2Me2CH2)3N] (5) were used for the synthesis of catenated derivatives (Me3Si)3SiSi[(o-OC6H4)3N] (9), (Me3Si)3SiSiMe2SiMe2Si(SiMe3)2Si[(o-OC6H4)3N] (11), and (Me3Si)3SiSi[(OC6H2Me2CH2)3N] (13) in reactions with (Me3Si)3SiK·THF (7) or (Me3Si)3SiK·[18-crown-6] (8). It was found that the nature of the (Me3Si)3SiK solvate determines the product of interaction, resulting in the formation of (Me3Si)3Si(CH2)4OSi[(OC6H2Me2CH2)3N] (12) or 13. Compounds obtained were characterized using multinuclear NMR and UV-vis spectroscopy and mass spectrometry. The molecular structures of 3, 9, and 11-13 were investigated by single-crystal X-ray analysis, featuring hypercoordinated Si atoms in a trigonal-bipyramidal coordination environment with O atoms in the equatorial plane. The structure of the side product [N(CH2C6H2Me2O)3Si]2O (6) was also studied, indicating highly tetrahedrally distorted trigonal-bipyramidal environment at the Si atoms, which was confirmed by crystal density functional theory calculations indicating the very weak Si ← N interaction. The Si···N interatomic distances span a broad range (2.23-2.78 Å). The dependence of structural and NMR parameters for hypercoordinated catenated compounds from the type of the ligand was established.

20.
Dalton Trans ; 47(17): 5985-5996, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29658036

ABSTRACT

The reactions of two cyclic germylene phosphane adducts with monosubstituted acetylenes caused the formation of spirocyclic germanes, which is postulated to occur by double acetylene insertion into germylene attached bonds. Further insertion of the formed cyclic divinylgermylene into transannular Si-Si or Si-Ge bonds provides the spirocyclic germanes. Thermal treatment of two germacyclopropenes, formed by the reaction of the two cyclic germylene phosphane adducts with tolane, also produced spirocyclogermanes. The structures of the latter require, however, a more complicated mechanistic proposal.

SELECTION OF CITATIONS
SEARCH DETAIL
...