Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Chem Biol ; 4(10): 716-721, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799583

ABSTRACT

Many small molecule bioactive and marketed drugs are chiral. They are often synthesised from commercially available chiral building blocks. However, chirality is sometimes incorrectly assigned by manufacturers with consequences for the end user ranging from: experimental irreproducibility, wasted time on synthesising the wrong product and reanalysis, to the added cost of purchasing the precursor and resynthesis of the correct stereoisomer. Further on, this could lead to loss of reputation, loss of funding, to safety and ethical concerns due to potential in vivo administration of the wrong form of a drug. It is our firm belief that more stringent control of chirality be provided by the supplier and, if needed, requested by the end user, to minimise the potential issues mentioned above. Certification of chirality would bring much needed confidence in chemical structure assignment and could be provided by a variety of techniques, from polarimetry, chiral HPLC, using known chiral standards, vibrational circular dichroism, and x-ray crystallography. A few case studies of our brushes with wrong chirality assignment are shown as well as some examples of what we believe to be good practice.

2.
Org Biomol Chem ; 21(41): 8344-8352, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37800999

ABSTRACT

Small molecule heterobifunctional degraders (commonly also known as PROTACs) offer tremendous potential to deliver new therapeutics in areas of unmet medical need. To deliver on this promise, a new discipline directed at degrader design and optimization has emerged within medicinal chemistry to address a central challenge, namely how to optimize relatively large, heterobifunctional molecules for activity, whilst maintaining drug-like properties. This process involves simultaneous optimization of the three principle degrader components: E3 ubiquitin ligase ligand, linker, and protein of interest (POI) ligand. A substantial degree of commonality exists with the E3 ligase ligands typically used at the early stages of degrader development, resulting in demand for these compounds as chemical building blocks in degrader research programs. We describe herein a collation of large scale, high-yielding syntheses to access the most utilized E3 ligase ligands to support early-stage degrader development.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Ligands , Proteins/metabolism
3.
J Med Chem ; 65(19): 13328-13342, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36179320

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic. The main protease (Mpro, 3CLpro) of SARS-CoV-2 is a key enzyme that processes polyproteins translated from the viral RNA. Mpro is therefore an attractive target for the design of inhibitors that block viral replication. We report the diastereomeric resolution of the previously designed SARS-CoV-2 Mpro α-ketoamide inhibitor 13b. The pure (S,S,S)-diastereomer, 13b-K, displays an IC50 of 120 nM against the Mpro and EC50 values of 0.8-3.4 µM for antiviral activity in different cell types. Crystal structures have been elucidated for the Mpro complexes with each of the major diastereomers, the active (S,S,S)-13b (13b-K), and the nearly inactive (R,S,S)-13b (13b-H); results for the latter reveal a novel binding mode. Pharmacokinetic studies show good levels of 13b-K after inhalative as well as after peroral administration. The active inhibitor (13b-K) is a promising candidate for further development as an antiviral treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Pandemics , Polyproteins , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , RNA, Viral , Viral Nonstructural Proteins/metabolism
4.
Org Biomol Chem ; 20(19): 4021-4029, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35506991

ABSTRACT

ISOX-DUAL is a dual inhibitor of CBP/p300 (IC50 = 0.65 µM) and BRD4 (IC50 = 1.5 µM) bromodomains, and a useful chemical probe for epigenetic research. Aspects of the published synthetic route to this compound and its analogues are small-scale, poor-yielding or simply unamenable to scale-up without optimization. Herein we describe the development of a refined synthesis that circumvents the challenges of the original report, with notable improvements to several of the key synthetic transformations. Moreover, a general Suzuki Miyaura protocol for the late stage installation of alternative dimethyl-isoxazole acetyl-lysine (KAc) binding motifs is presented.


Subject(s)
Nuclear Proteins , Transcription Factors , Cell Cycle Proteins/metabolism , Isoxazoles/chemistry , Lysine , Nuclear Proteins/chemistry , Protein Domains , Transcription Factors/chemistry
5.
Oncogenesis ; 10(10): 68, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34642317

ABSTRACT

CIC-DUX4 sarcoma (CDS) is a highly aggressive and metastatic small round type of predominantly pediatric sarcoma driven by a fusion oncoprotein comprising the transcriptional repressor Capicua (CIC) fused to the C-terminal transcriptional activation domain of DUX4. CDS rapidly develops resistance to chemotherapy, thus novel specific therapies are greatly needed. We demonstrate that CIC-DUX4 requires P300/CBP to induce histone H3 acetylation, activate its targets, and drive oncogenesis. We describe the synthetic route to a selective and highly potent P300/CBP inhibitor named iP300w and related stereoisomers, and find that iP300w efficiently suppresses CIC-DUX4 transcriptional activity and reverses CIC-DUX4 induced acetylation. iP300w is active at 100-fold lower concentrations than related stereoisomers or A-485. At low doses, iP300w shows specificity to CDS cancer cell lines, rapidly inducing cell cycle arrest and preventing growth of established CDS xenograft tumors when delivered in vivo. The effectiveness of iP300w to inactivate CIC-DUX4 highlights a promising therapeutic opportunity for CDS.

6.
Curr Opin Pharmacol ; 59: 43-51, 2021 08.
Article in English | MEDLINE | ID: mdl-34058637

ABSTRACT

The field of targeted protein degradation encompasses a growing number of modalities that achieve potent and selective knockdown of target proteins at the post-translational level. Among the most clinically advanced are bifunctional small-molecule degraders, also referred to as PROteolysis Targeting Chimeras, Degronimids, SNIPERs, or uSMITEs. Although applicable to many disease indications, oncology stands to be the first to benefit from this promising therapeutic approach, with the first investigational new drugs (INDs) filed in 2019 and a proliferation of research specifically focused on harnessing degraders for cancer treatment. In this review, we consider the toolbox of guidelines, reagents, and technologies that has evolved alongside the field to support degrader research and development.


Subject(s)
Proteins , Humans , Proteins/metabolism , Proteolysis
7.
Org Lett ; 9(14): 2613-6, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17550257

ABSTRACT

A synthesis of highly functionalized nitroalkenes is reported that utilizes a cross metathesis (CM) reaction between simple aliphatic nitro compounds and a range of substituted alkenes. This chemistry offers a simple and attractive route to nitroalkenes that would otherwise be difficult to prepare, and that have a very useful application as precursors to a variety of heterocyclic entities.


Subject(s)
Alkenes/chemical synthesis , Nitro Compounds/chemical synthesis , Alkenes/chemistry , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Indicators and Reagents , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Nitro Compounds/chemistry , Piperidines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...