Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(3): 1023-1034, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36692444

ABSTRACT

Classical molecular dynamics (MD) simulations of electrolyte systems are important to gain insight into the atom-scale properties that determine the battery-relevant performance. The recent Tinker-HP software release enables efficient and accurate MD simulations with the AMOEBA polarizable force field. In this work, we developed a procedure to construct a universal AMOEBA model for the solvent family of glymes (glycol methyl ethers), which involves a refinement scheme for valence parameters by fitting the AMOEBA-derived atomic forces to those computed at the DFT level. The refined AMOEBA model provides a good description of both local and nonlocal properties in terms of the spectroscopic response of glyme molecules, as well as the liquid glyme density and dielectric constant. In addition, the complexation energies of alkali and alkaline-earth metal cations with tetraglyme molecules obtained from AMOEBA calculations are in good agreement with DFT results, demonstrating the suitability of the developed AMOEBA model for an accurate simulation of glyme-based battery electrolytes. We also expect the procedure to be transferable to the development of AMOEBA models for other battery electrolyte systems.

2.
Sensors (Basel) ; 19(15)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382364

ABSTRACT

Dual mode detectors combining metal detection and ground-penetrating radar are increasingly being used during humanitarian demining operations because of their ability to discriminate metal clutter. There are many reports in the academic literature studying metal detector and ground-penetrating radar systems individually. However, the combination of these techniques has received much less attention. This paper describes the development of a novel dual modality landmine detector, which integrates spectroscopic metal detection with ground-penetrating radar. This paper presents a feature-level sensor fusion strategy based on three features extracted from the two sensors. This paper shows how the data from the two components can be fused together to enrich the feedback to the operator. The algorithms presented in this paper are targeted at automating the location of buried, visibly obscured objects; however, the system described is also capable of collecting information which could also be used for the potential classification of such items.

SELECTION OF CITATIONS
SEARCH DETAIL