Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Thromb Haemost ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863155

ABSTRACT

BACKGROUND: Fidanacogene elaparvovec, an adeno-associated virus-based gene therapy vector expressing the high-activity factor IX (FIX) variant FIX-R338L, is in development for hemophilia B. One-stage clotting (OS) assays and chromogenic substrate (CS) assays are commonly used to measure FIX-R338L variant activity. Data from ongoing trials suggest FIX activity varies between different OS and CS assays. MATERIAL AND METHODS: To better understand FIX-R338L activity in clinical samples, an international multisite field study was conducted across a central laboratory and 18 local laboratories, using standard protocols, reagents, and instrumentation, with individual participant samples from a phase 1/2a study of fidanacogene elaparvovec. RESULTS: Unlike the wild-type FIX control, FIX-R338L activity was higher with the OS silica-based assay versus OS ellagic acid-based and CS assays. Variation in FIX activity was greater at the lowest activity levels. Activated FIX (FIXa) in plasma could result in higher OS assay activity or increased thrombin generation, which could overestimate FIX activity. However, FIXa was not detected in the participant samples, indicating that it was not contributing to the OS assay differences. Since individuals on gene therapy may receive exogenous replacement FIX products, replacement products were spiked into patient plasma samples to target a therapeutic concentration. Exogenous FIX was additive to endogenous FIX-R338L, with no interference from FIX-R338L. CONCLUSION: These results demonstrate FIX-R338L activity can be measured with OS and CS assays in clinical laboratories and provide insight into assay variability when measuring FIX with endogenously produced FIX-R338L. The findings may help establish best practices for measuring FIX-R338L activity (Clinicaltrials.gov identifier: NCT02484092).

2.
Bioanalysis ; 16(7): 77-119, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38389403

ABSTRACT

The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with these NEW Regulations" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1A (Mass Spectrometry Assays and Regulated Bioanalysis/BMV), P1B (Regulatory Inputs) and Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) are published in volume 16 of Bioanalysis, issues 8 and 9 (2024), respectively.


Subject(s)
Biological Assay , Technology , Biological Assay/methods , Biomarkers/analysis , Cell- and Tissue-Based Therapy , Immunotherapy, Active
3.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645950

ABSTRACT

A series of SARS-CoV-2 variants emerged during the pandemic under selection for neutralization resistance. Convalescent and vaccinated sera show consistently different cross-neutralization profiles depending on infecting or vaccine variants. To understand the basis of this heterogeneity, we modeled serum cross-neutralization titers for 165 sera after infection or vaccination with historically prominent lineages tested against 18 variant pseudoviruses. Cross-neutralization profiles were well captured by models incorporating autologous neutralizing titers and combinations of specific shared and differing mutations between the infecting/vaccine variants and pseudoviruses. Infecting/vaccine variant-specific models identified mutations that significantly impacted cross-neutralization and quantified their relative contributions. Unified models that explained cross-neutralization profiles across all infecting and vaccine variants provided accurate predictions of holdout neutralization data comprising untested variants as infecting or vaccine variants, and as test pseudoviruses. Finally, comparative modeling of 2-dose versus 3-dose mRNA-1273 vaccine data revealed that the third dose overcame key resistance mutations to improve neutralization breadth. HIGHLIGHTS: Modeled SARS-CoV-2 cross-neutralization using mutations at key sitesIdentified resistance mutations and quantified relative impactAccurately predicted holdout variant and convalescent/vaccine sera neutralizationShowed that the third dose of mRNA-1273 vaccination overcomes resistance mutations.

4.
Bioanalysis ; 15(15): 861-903, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37584363

ABSTRACT

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.


Subject(s)
Biological Assay , Research Report , Flow Cytometry/methods , Ligands , Biomarkers/analysis , Biological Assay/methods
5.
Bioanalysis ; 15(14): 773-814, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37526071

ABSTRACT

The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.


Subject(s)
Prescription Drugs , Technology , Biological Assay/methods , Biomarkers/analysis , Cell- and Tissue-Based Therapy
8.
Bioanalysis ; 14(10): 627-692, 2022 May.
Article in English | MEDLINE | ID: mdl-35578974

ABSTRACT

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.


Subject(s)
Flow Cytometry , Biomarkers/analysis , Flow Cytometry/methods , Humans , Indicators and Reagents , Liquid Biopsy , Mass Spectrometry
9.
Hum Genet ; 141(6): 1165-1173, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34081195

ABSTRACT

Pharmaceutical companies have increasingly utilized genomic data for the selection of drug targets and the development of precision medicine approaches. Most major pharmaceutical companies routinely collect DNA from clinical trial participants and conduct pharmacogenomic (PGx) studies. However, the implementation of PGx studies during clinical development presents a number of challenges. These challenges include adapting to a constantly changing global regulatory environment, challenges in study design and clinical implementation, and the increasing concerns over patient privacy. Advances in the field of genomics are also providing new opportunities for pharmaceutical companies, including the availability of large genomic databases linked to patient health information, the growing use of polygenic risk scores, and the direct sequencing of clinical trial participants. The Industry Pharmacogenomics Working Group (I-PWG) is an association of pharmaceutical companies actively working in the field of pharmacogenomics. This I-PWG perspective will provide an overview of the steps pharmaceutical companies are taking to address each of these challenges, and the approaches being taken to capitalize on emerging scientific opportunities.


Subject(s)
Pharmacogenetics , Precision Medicine , DNA , Genomics , Humans , Pharmaceutical Preparations
10.
Oncologist ; 26(7): e1143-e1155, 2021 07.
Article in English | MEDLINE | ID: mdl-33955129

ABSTRACT

BACKGROUND: The most frequently reported treatment-related adverse event in clinical trials with the cyclin-dependent kinase 4/6 (CDK4/6) inhibitor palbociclib is neutropenia. Allelic variants in ABCB1 and ERCC1 might be associated with early occurrence (i.e., end of week 2 treatment) of grade 3/4 neutropenia. Pharmacogenetic analyses were performed to uncover associations between single nucleotide polymorphisms (SNPs) in these genes, patient baseline characteristics, and early occurrence of grade 3/4 neutropenia. MATERIALS AND METHODS: ABCB1 (rs1045642, rs1128503) and ERCC1 (rs3212986, rs11615) were analyzed in germline DNA from palbociclib-treated patients from PALOMA-2 (n = 584) and PALOMA-3 (n = 442). SNP, race, and cycle 1 day 15 (C1D15) absolute neutrophil count (ANC) data were available for 652 patients. Univariate and multivariable analyses evaluated associations between SNPs, patient baseline characteristics, and early occurrence of grade 3/4 neutropenia. Analyses were stratified by Asian (n = 122) and non-Asian (n = 530) ethnicity. Median progression-free survival (mPFS) was estimated using the Kaplan-Meier method. The effect of genetic variants on palbociclib pharmacokinetics was analyzed. RESULTS: ABCB1 and ERCC1_rs11615 SNP frequencies differed between Asian and non-Asian patients. Multivariable analysis showed that low baseline ANC was a strong independent risk factor for C1D15 grade 3/4 neutropenia regardless of race (Asians: odds ratio [OR], 6.033, 95% confidence interval [CI], 2.615-13.922, p < .0001; Non-Asians: OR, 6.884, 95% CI, 4.138-11.451, p < .0001). ABCB1_rs1128503 (C/C vs. T/T: OR, 0.57, 95% CI, 0.311-1.047, p = .070) and ERCC1_rs11615 (A/A vs. G/G: OR, 1.75, 95% CI, 0.901-3.397, p = .098) were potential independent risk factors for C1D15 grade 3/4 neutropenia in non-Asian patients. Palbociclib mPFS was consistent across genetic variants; exposure was not associated with ABCB1 genotype. CONCLUSION: This is the first comprehensive assessment of pharmacogenetic data in relationship to exposure to a CDK4/6 inhibitor. Pharmacogenetic testing may inform about potentially increased likelihood of patients developing severe neutropenia (NCT01740427, NCT01942135). IMPLICATIONS FOR PRACTICE: Palbociclib plus endocrine therapy improves hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer outcomes, but is commonly associated with neutropenia. Genetic variants in ABCB1 may influence palbociclib exposure, and in ERCC1 are associated with chemotherapy-induced severe neutropenia. Here, the associations of single nucleotide polymorphisms in these genes and baseline characteristics with neutropenia were assessed. Low baseline absolute neutrophil count was a strong risk factor (p < .0001) for grade 3/4 neutropenia. There was a trend indicating that ABCB1_rs1128503 and ERCC1_rs11615 were potential risk factors (p < .10) for grade 3/4 neutropenia in non-Asian patients. Pharmacogenetic testing could inform clinicians about the likelihood of severe neutropenia with palbociclib.


Subject(s)
Breast Neoplasms , Neutropenia , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/drug therapy , Female , Humans , Neutropenia/chemically induced , Neutropenia/genetics , Pharmacogenomic Testing , Piperazines , Pyridines , Receptor, ErbB-2/therapeutic use
11.
J Clin Pharmacol ; 61(9): 1220-1231, 2021 09.
Article in English | MEDLINE | ID: mdl-33813736

ABSTRACT

Ertugliflozin, a sodium-glucose cotransporter 2 inhibitor, is primarily metabolized via glucuronidation by the uridine 5'-diphospho-glucuronosyltransferase (UGT) isoform UGT1A9. This noncompartmental meta-analysis of ertugliflozin pharmacokinetics evaluated the relationship between ertugliflozin exposure and dose, and the effect of UGT1A9 genotype on ertugliflozin exposure. Pharmacokinetic data from 25 phase 1 studies were pooled. Structural models for dose proportionality described the relationship between ertugliflozin area under the plasma concentration-time curve (AUC) or maximum observed plasma concentration (Cmax ) and dose. A structural model for the UGT1A9 genotype described the relationship between ertugliflozin AUC and dose, with genotype information on 3 UGT1A9 polymorphisms (UGT1A9-2152, UGT1A9*3, UGT1A9*1b) evaluated as covariates from the full model. Ertugliflozin AUC and Cmax increased in a dose-proportional manner over the dose range of 0.5-300 mg, and population-predicted AUC and Cmax values for the 5- and 15-mg ertugliflozin tablets administered in the fasted state demonstrated good agreement with the observed data. The largest change in ertugliflozin AUC was in subjects carrying the UGT1A9*3 heterozygous variant, with population-predicted AUC (90% confidence interval) values of 485 ng·h/mL (458 to 510 ng·h/mL) and 1560 ng·h/mL (1480 to 1630 ng·h/mL) for ertugliflozin 5 and 15 mg, respectively, compared with 436 ng·h/mL (418 to 455 ng·h/mL) and 1410 ng·h/mL (1350 to 1480 ng·h/mL), respectively, in wild-type subjects. Overall, the mean effects of the selected UGT1A9 variants on ertugliflozin AUC were within ±10% of the wild type. UGT1A9 genotype did not have any clinically meaningful effects on ertugliflozin exposure in healthy subjects. No ertugliflozin dose adjustment would be required in patients with the UGT1A9 variants assessed in this study.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacokinetics , UDP-Glucuronosyltransferase 1A9/genetics , Area Under Curve , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Clinical Trials, Phase I as Topic , Dose-Response Relationship, Drug , Genotype , Glucuronosyltransferase/genetics , Humans , Metabolic Clearance Rate , Models, Biological , Polymorphism, Genetic , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage
12.
Bioanalysis ; 13(6): 415-463, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33533276

ABSTRACT

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.


Subject(s)
Cell- and Tissue-Based Therapy , Flow Cytometry , Genetic Therapy , Real-Time Polymerase Chain Reaction , Vaccines/analysis , Humans , Quality Control , Receptors, Chimeric Antigen/analysis , United States , United States Food and Drug Administration
13.
Bioanalysis ; 11(21): 2011-2024, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31648530

ABSTRACT

The number of gene therapy (GTx) modality therapies in development has grown significantly in the last few years. Adeno-associated virus (AAV)-based delivery approach has become most prevalent among other virus-based GTx vectors. Several regulatory guidelines provide the industry with general considerations related to AAV GTx development including discussion and recommendations related to highly diverse bioanalytical support of the AAV-based therapeutics. This includes assessment of pre- and post-treatment immunity, evaluation of post-treatment viral shedding and infectivity, as well as detection of transgene protein expression. An overview of the current regulatory recommendations as found in currently active and published draft US FDA and EMA guidance or guideline documents is presented herein.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Social Control, Formal , Animals , Genetic Therapy/adverse effects , Genetic Therapy/legislation & jurisprudence , Genome, Viral/genetics , Humans , Immunity/genetics
14.
Eur J Clin Pharmacol ; 75(9): 1211-1218, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31123759

ABSTRACT

PURPOSE: Cytochrome P450 (CYP) 3A plays an important role in the metabolism of many clinically used drugs and exhibits substantial between-subject variability (BSV) in activity. Current methods to assess variability in CYP3A activity have limitations and there remains a need for a minimally invasive clinically translatable strategy to define CYP3A activity. The purpose of this study was to evaluate the potential for a caffeine metabolic ratio to describe variability in CYP3A activity. METHODS: The metabolic ratio 1,3,7-trimethyluric acid (TMU) to caffeine was evaluated as a biomarker to describe variability in CYP3A activity in a cohort (n = 28) of healthy 21 to 35-year-old males. Midazolam, caffeine, and TMU concentrations were assessed at baseline and following dosing of rifampicin (300 mg daily) for 7 days. RESULTS: At baseline, correlation coefficients for the relationship between apparent oral midazolam clearance (CL/F) with caffeine/TMU ratio measured at 3, 4, and 6 h post dose were 0.82, 0.79, and 0.65, respectively. The strength of correlations was retained post rifampicin dosing; 0.72, 0.87, and 0.82 for the ratios at 3, 4, and 6 h, respectively. Weaker correlations were observed between the change in midazolam CL/F and change in caffeine/TMU ratio post/pre-rifampicin dosing. CONCLUSION: BSV in CYP3A activity was well described by caffeine/TMU ratios pre- and post-induction. The caffeine/TMU ratio may be a convenient tool to assess BSV in CYP3A activity, but assessment of caffeine/TMU ratio alone is unlikely to account for all sources of variability in CYP3A activity.


Subject(s)
Caffeine/blood , Cytochrome P-450 CYP3A/metabolism , Uric Acid/analogs & derivatives , Adult , Biomarkers/blood , Caffeine/pharmacokinetics , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inducers/blood , Cytochrome P-450 CYP3A Inducers/pharmacokinetics , Diet , Genotype , Humans , Male , Midazolam/blood , Midazolam/pharmacokinetics , Phenotype , Racial Groups/genetics , Rifampin/blood , Rifampin/pharmacokinetics , Uric Acid/blood , Young Adult
15.
J Clin Pharmacol ; 59(6): 872-879, 2019 06.
Article in English | MEDLINE | ID: mdl-30633368

ABSTRACT

Axitinib is a second-generation small-molecule vascular endothelial growth factor receptor inhibitor. An axitinib steady-state area under the plasma concentration-time curve (AUCSS ) >300 ng/mL/hr is associated with superior progression-free and overall survival. This study sought to characterize the physiological and molecular characteristics driving variability in axitinib AUCSS using physiologically based pharmacokinetic modeling to identify exposure biomarkers for this drug. The capacity to predict subjects likely to fail to achieve an axitinib AUCSS >300 ng/mL/hr was evaluated as a secondary outcome. A full physiologically based pharmacokinetic model incorporating mechanistic absorption was developed and verified for axitinib in accordance with the US Food and Drug Administration Guidance using Simcyp (Version 17.1). This model was used to simulate axitinib exposure over 7 days with twice-daily dosing (5 mg) in a cohort of 1000 virtual cancer patients. Multiple linear regression modeling was used to identify patient characteristics associated with differences in axitinib exposure. A multivariable linear regression model incorporating hepatic cytochrome P450 (CYP) 3A4 abundance, albumin concentration, hepatic CYP1A2 abundance, hepatic CYP2C19 abundance, and intestinal CYP2C19 abundance provided robust prediction of axitinib AUCSS (R2 = 0.890; P < .001). By accounting for these variables, it was possible to identify subjects who would fail to achieve an effective axitinib AUCSS with a specificity of 88.7% and a sensitivity of 92.6%. Variability in axitinib AUCSS is primarily driven by differences in hepatic CYP3A4 abundance and albumin concentration. Consideration of these 2 characteristic is likely to be sufficient to individualize axitinib dosing.


Subject(s)
Axitinib/pharmacokinetics , Biological Variation, Population/drug effects , Drug Dosage Calculations , Neoplasms/drug therapy , Albumins/metabolism , Biomarkers , Biomarkers, Pharmacological , Cytochrome P-450 CYP3A/metabolism , Humans , Linear Models , Models, Biological , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
16.
J Clin Pharmacol ; 59(1): 139-152, 2019 01.
Article in English | MEDLINE | ID: mdl-30192390

ABSTRACT

Maraviroc is a C-C chemokine receptor type-5 antagonist approved for the treatment of HIV-1. Previous studies show that cytochrome P450 3A5 (CYP3A5) plays a role in maraviroc metabolism. CYP3A5 is subject to a genetic polymorphism. The presence of 2 functional alleles (CYP3A5*1/*1) confers the extensive metabolism phenotype, which is rare in whites but common in blacks. The effect of CYP3A5 genotype on maraviroc and/or metabolite pharmacokinetics was evaluated in 2 clinical studies: a post hoc analysis from a phase 2b/3 study (NCT00098293) conducted in 494 HIV-1-infected subjects (study 1) in which the impact on maraviroc efficacy in 303 subjects was also assessed, and a study conducted in 47 healthy volunteers (study 2). In study 2 (NCT02625207), extensive metabolizers had 26% to 37% lower mean area under the concentration-time curve compared with poor metabolizers (no CYP3A5*1 alleles). This effect diminished to 17% in the presence of potent CYP3A inhibition. The effect of CYP3A5 genotype was greatest in the formation of the metabolite (1S,2S)-2-hydroxymaraviroc. In study 1, the CYP3A5*1/*1 genotype unexpectedly had higher maraviroc area under the curve predictions (20%) compared with those with no CYP3A5*1 alleles. The reason for this disparity remains unclear. The proportions of subjects with viral loads <50 and <400 copies/mL for maraviroc were comparable among all 3 CYP3A5 genotypes. In both studies maraviroc exposures were in the range of near-maximal viral inhibition in the majority of subjects. These results demonstrate that although CYP3A5 contributes to the metabolism of maraviroc, CYP3A5 genotype does not affect the clinical response to maraviroc in combination treatment of HIV-1 infection at approved doses.


Subject(s)
Cytochrome P-450 CYP3A/genetics , HIV Fusion Inhibitors/pharmacokinetics , HIV Fusion Inhibitors/therapeutic use , HIV Infections , HIV-1 , Maraviroc/pharmacokinetics , Maraviroc/therapeutic use , Adult , Double-Blind Method , Female , Genotype , HIV Fusion Inhibitors/blood , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/metabolism , Healthy Volunteers , Humans , Male , Maraviroc/blood , Middle Aged , Polymorphism, Genetic , Treatment Outcome , Young Adult
17.
Br J Clin Pharmacol ; 85(1): 216-226, 2019 01.
Article in English | MEDLINE | ID: mdl-30340248

ABSTRACT

AIMS: Demonstrate the presence of cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) proteins and mRNAs in isolated human plasma exosomes and evaluate the capacity for exosome-derived biomarkers to characterize variability in CYP3A4 activity. METHODS: The presence of CYP and UGT protein and mRNA in exosomes isolated from human plasma and HepaRG cell culture medium was determined by mass spectrometry and reverse transcription-polymerase chain reaction, respectively. The concordance between exosome-derived CYP3A4 biomarkers and midazolam apparent oral clearance (CL/F) was evaluated in a small proof-of-concept study involving six genotyped (CYP3A4 *1/*1 and CYP3A5 *3/*3) Caucasian males. RESULTS: Exosomes isolated from human plasma contained peptides and mRNA originating from CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2 J2, 3A4 and 3A5, UGT 1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10 and 2B15, and NADPH-cytochrome P450 reductase. Mean (95% confidence interval) exosome-derived CYP3A4 protein expression pre- and post-rifampicin dosing was 0.24 (0.2-0.28) and 0.42 (0.21-0.65) ng ml-1 exosome concentrate. Mean (95% confidence interval) exosome CYP3A4 mRNA expression pre- and post-rifampicin dosing was 6.0 (1.1-32.7) and 48.3 (11.3-104) × 10-11 2-ΔΔCt , respectively. R2 values for correlations of exosome-derived CYP3A4 protein expression, CYP3A4 mRNA expression, and ex vivo CYP3A4 activity with midazolam CL/F were 0.905, 0.787 and 0.832, respectively. CONCLUSIONS: Consistent strong concordance was observed between exosome-derived CYP3A4 biomarkers and midazolam CL/F. The significance of these results is that CYP3A4 is the drug-metabolizing enzyme of greatest clinical importance and variability in CYP3A4 activity is poorly described by existing precision dosing strategies.


Subject(s)
Biological Variation, Population , Cytochrome P-450 CYP3A/metabolism , Drug Monitoring/methods , Exosomes/chemistry , Administration, Oral , Adult , Biomarkers/analysis , Cell Line , Cohort Studies , Cytochrome P-450 CYP3A/analysis , Cytochrome P-450 CYP3A/genetics , Genotyping Techniques , Glucuronosyltransferase/analysis , Glucuronosyltransferase/genetics , Healthy Volunteers , Humans , Male , Mass Spectrometry , Metabolic Clearance Rate , Midazolam/administration & dosage , Midazolam/pharmacokinetics , Proof of Concept Study , RNA, Messenger/analysis , Young Adult
18.
Eur J Clin Pharmacol ; 74(7): 913-920, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29572563

ABSTRACT

PURPOSE: Cytochrome P450 (CYP) 3A4 is responsible for the metabolism of more than 30% of clinically used drugs. Inherent between subject variability in clearance of CYP3A4 substrates is substantial; by way of example, midazolam clearance varies by > 10-fold between individuals before considering the impact of extrinsic factors. Relatively little is known about inter-racial variability in the activity of this enzyme. METHODS: This study assessed inter-racial variability in midazolam exposure in a cohort (n = 30) of CYP3A genotyped, age-matched healthy males of Caucasian and South Asian ancestries. Midazolam exposure was assessed at baseline, following 7 days of rifampicin and following 3 days of clarithromycin. RESULTS: The geometric mean baseline midazolam area under the plasma concentration curve (AUC0-6) in Caucasians (1057 µg/L/min) was 27% greater than South Asians (768 µg/L/min). Similarly, the post-induction midazolam AUC0-6 in Caucasians (308 µg/L/min) was 50% greater than South Asians (154 µg/L/min), while the post-inhibition midazolam AUC0-6 in Caucasians (1834 µg/L/min) was 41% greater than South Asians (1079 µg/L/min). The difference in baseline AUC0-6 between Caucasians and South Asians was statistically significant (p ≤ 0.05), and a trend toward significance (p = 0.067) was observed for the post-induction AUC0-6 ratio, in both unadjusted and genotype adjusted analyses. CONCLUSIONS: Significantly higher midazolam clearance was observed in healthy age-matched males of South Asian compared to Caucasian ancestry that was not explained by differences in the frequency of CYP3A genotypes.


Subject(s)
Asian People , Cytochrome P-450 CYP3A/metabolism , Midazolam/pharmacokinetics , White People , Adult , Area Under Curve , Asian People/genetics , Clarithromycin/blood , Clarithromycin/pharmacokinetics , Clarithromycin/pharmacology , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inducers/blood , Cytochrome P-450 CYP3A Inducers/pharmacokinetics , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A Inhibitors/blood , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Enzyme Induction , Genotype , Humans , Male , Midazolam/blood , Racial Groups , Rifampin/blood , Rifampin/pharmacokinetics , Rifampin/pharmacology , White People/genetics , Young Adult
19.
Pharmacogenomics ; 16(18): 2055-67, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26616152

ABSTRACT

Genetic polymorphisms in metabolizing enzymes and drug transporters have been shown to significantly impact the exposure of drugs having a high dependence on a single mechanism for their absorption, distribution or clearance, such that genotyping can lead to actionable steps in disease treatment. Recently, global regulatory agencies have provided guidance for assessment of pharmacogenomics during early stages of drug development, both in the form of formal guidance and perspectives published in scientific journals. The Industry Pharmacogenomics Working Group (I-PWG), conducted a survey among member companies to assess the practices relating to absorption, distribution, metabolism, excretion pharmacogenomics) during early stages of clinical development, to assess the impact of the recent Regulatory Guidance issued by the US FDA and EMA on Industry practices.


Subject(s)
Clinical Trials as Topic/methods , Drug Industry/methods , Pharmacogenetics/methods , Animals , Clinical Trials as Topic/legislation & jurisprudence , Drug Industry/legislation & jurisprudence , Humans , Pharmacogenetics/legislation & jurisprudence , Pharmacokinetics , Polymorphism, Genetic , Practice Guidelines as Topic , United States , United States Food and Drug Administration
20.
OMICS ; 18(1): 10-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24456465

ABSTRACT

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.


Subject(s)
Information Dissemination/ethics , Metagenomics/statistics & numerical data , Research Design/standards , Data Mining , Humans , Metagenomics/economics , Metagenomics/trends , Publishing , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL