Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Biol ; 221(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35024765

ABSTRACT

Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.


Subject(s)
Dystrophin/genetics , Muscles/metabolism , YY1 Transcription Factor/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Aging/metabolism , Animals , DNA/metabolism , Dystrophin/metabolism , Gene Expression Regulation , Humans , Lysine/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/genetics , Muscle Fibers, Skeletal/metabolism , Muscles/pathology , Muscles/ultrastructure , Muscular Atrophy/pathology , Muscular Dystrophies/pathology , Transcriptome/genetics , p300-CBP Transcription Factors/deficiency
2.
Sci Transl Med ; 8(361): 361ra139, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27798264

ABSTRACT

Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr-/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.


Subject(s)
Muscle, Skeletal/physiopathology , Muscular Dystrophies/pathology , NAD/chemistry , Poly ADP Ribosylation , Adenosine Diphosphate/chemistry , Animals , Caenorhabditis elegans , Cell Line , Cytokines/chemistry , Fibrosis/pathology , Gene Expression Profiling , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscular Diseases/pathology , Nicotinamide Phosphoribosyltransferase/chemistry , Nitrosamines/chemistry , RNA, Messenger/metabolism , Tyramine/analogs & derivatives , Tyramine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL