Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Genome Med ; 16(1): 75, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822427

ABSTRACT

BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.


Subject(s)
Hypopituitarism , Mice, Knockout , Pituitary Gland , Hypopituitarism/genetics , Animals , Humans , Pituitary Gland/metabolism , Pituitary Gland/abnormalities , Pituitary Gland/pathology , Mice , Phenotype , Female , Male , Disease Models, Animal , Exome Sequencing , Septo-Optic Dysplasia/genetics
2.
Article in English | MEDLINE | ID: mdl-38717911

ABSTRACT

CONTEXT: The pituitary gland is key for childhood growth, puberty, and metabolism. Pituitary dysfunction is associated with a spectrum of phenotypes, from mild to severe. Congenital Hypopituitarism (CH) is the most commonly reported pediatric endocrine dysfunction with an incidence of 1:4000, yet low rates of genetic diagnosis have been reported. OBJECTIVE: We aimed to unveil the genetic etiology of CH in a large cohort of patients from Argentina. METHODS: We performed whole exome sequencing of 137 unrelated cases of CH, the largest cohort examined with this method to date. RESULTS: Of the 137 cases, 19.1% and 16% carried pathogenic or likely pathogenic variants in known and new genes, respectively, while 28.2% carried variants of uncertain significance. This high yield was achieved through the integration of broad gene panels (genes described in animal models and/or other disorders), an unbiased candidate gene screen with a new bioinformatics pipeline (including genes high loss of function intolerance), and analysis of copy number variants. Three novel findings emerged. First, the most prevalent affected gene encodes the cell adhesion factor ROBO1. Affected children had a spectrum of phenotypes, consistent with a role beyond pituitary stalk interruption syndrome. Second, we found that CHD7 mutations also produce a phenotypic spectrum, not always associated with full CHARGE syndrome. Third, we add new evidence of pathogenicity in the genes PIBF1 and TBC1D32, and report 13 novel candidate genes associated with CH (e.g. PTPN6, ARID5B). CONCLUSION: Overall, these results provide an unprecedented insight into the diverse genetic etiology of hypopituitarism.

3.
Front Microbiol ; 15: 1343029, 2024.
Article in English | MEDLINE | ID: mdl-38384262

ABSTRACT

Bacterial P450 cytochromes (BacCYPs) are versatile heme-containing proteins responsible for oxidation reactions on a wide range of substrates, contributing to the production of valuable natural products with limitless biotechnological potential. While the sequencing of microbial genomes has provided a wealth of BacCYP sequences, functional characterization lags behind, hindering our understanding of their roles. This study employs a comprehensive approach to predict BacCYP substrate specificity, bridging the gap between sequence and function. We employed an integrated approach combining sequence and functional data analysis, genomic context exploration, 3D structural modeling with molecular docking, and phylogenetic clustering. The research begins with an in-depth analysis of BacCYP sequence diversity and structural characteristics, revealing conserved motifs and recurrent residues in the active site. Phylogenetic analysis identifies distinct groups within the BacCYP family based on sequence similarity. However, our study reveals that sequence alone does not consistently predict substrate specificity, necessitating additional perspectives. The study delves into the genetic context of BacCYPs, utilizing neighboring gene information to infer potential substrates, a method proven very effective in many cases. Molecular docking is employed to assess BacCYP-substrate interactions, confirming potential substrates and providing insights into selectivity. Finally, a comprehensive strategy is proposed for predicting BacCYP substrates, involving all the evaluated approaches. The effectiveness of this strategy is demonstrated with two case studies, highlighting its potential for substrate discovery.

4.
J Chem Inf Model ; 64(5): 1581-1592, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38373276

ABSTRACT

Metalloproteins play a fundamental role in molecular biology, contributing to various biological processes. However, the discovery of high-affinity ligands targeting metalloproteins has been delayed due, in part, to a lack of suitable tools and data. Molecular docking, a widely used technique for virtual screening of small-molecule ligand interactions with proteins, often faces challenges when applied to metalloproteins due to the particular nature of the ligand metal bond. To address these limitations associated with docking metalloproteins, we introduce a knowledge-driven docking approach known as "metalloprotein bias docking" (MBD), which extends the AutoDock Bias technique. We assembled a comprehensive data set of metalloprotein-ligand complexes from 15 different metalloprotein families, encompassing Ca, Co, Fe, Mg, Mn, and Zn metal ions. Subsequently, we conducted a performance analysis of our MBD method and compared it to the conventional docking (CD) program AutoDock4, applied to various metalloprotein targets within our data set. Our results demonstrate that MBD outperforms CD, significantly enhancing accuracy, selectivity, and precision in ligand pose prediction. Additionally, we observed a positive correlation between our predicted ligand free energies and the corresponding experimental values. These findings underscore the potential of MBD as a valuable tool for the effective exploration of metalloprotein-ligand interactions.


Subject(s)
Metalloproteins , Humans , Metalloproteins/chemistry , Molecular Docking Simulation , Ligands
5.
Proteins ; 92(6): 720-734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192262

ABSTRACT

Our globin census update allows us to refine our vision of globin origin, evolution, and structure to function relationship in the context of the currently accepted tree of life. The modern globin domain originates as a single domain, three-over-three α-helical folded structure before the diversification of the kingdoms of life (Bacteria, Archaea, Eukarya). Together with the diversification of prokaryotes, three monophyletic globin families (M, S, and T) emerged, most likely in Proteobacteria and Actinobacteria, displaying specific sequence and structural features, and spread by vertical and horizontal gene transfer, most probably already present in the last universal common ancestor (LUCA). Non-globin domains were added, and eventually lost again, creating multi-domain structures in key branches of M- (FHb and Adgb) and the vast majority of S globins, which with their coevolved multi-domain architectures, have predominantly "sensor" functions. Single domain T-family globins diverged into four major groups and most likely display functions related to reactive nitrogen and oxygen species (RNOS) chemistry, as well as oxygen storage/transport which drives the evolution of its major branches with their characteristic key distal residues (B10, E11, E7, and G8). M-family evolution also lead to distinctive major types (FHb and Fgb, Ngb, Adgb, GbX vertebrate Gbs), and shows the shift from high oxygen affinity controlled by TyrB10-Gln/AsnE11 likely related to RNOS chemistry in microorganisms, to a moderate oxygen affinity storage/transport function controlled by hydrophobic B10/E11-HisE7 in multicellular animals.


Subject(s)
Evolution, Molecular , Globins , Phylogeny , Globins/genetics , Globins/chemistry , Globins/metabolism , Humans , Bacteria/genetics , Bacteria/metabolism , Animals , Archaea/genetics , Archaea/metabolism , Protein Domains , Gene Transfer, Horizontal
6.
Nat Commun ; 14(1): 8379, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104123

ABSTRACT

Energetic local frustration offers a biophysical perspective to interpret the effects of sequence variability on protein families. Here we present a methodology to analyze local frustration patterns within protein families and superfamilies that allows us to uncover constraints related to stability and function, and identify differential frustration patterns in families with a common ancestry. We analyze these signals in very well studied protein families such as PDZ, SH3, ɑ and ß globins and RAS families. Recent advances in protein structure prediction make it possible to analyze a vast majority of the protein space. An automatic and unsupervised proteome-wide analysis on the SARS-CoV-2 virus demonstrates the potential of our approach to enhance our understanding of the natural phenotypic diversity of protein families beyond single protein instances. We apply our method to modify biophysical properties of natural proteins based on their family properties, as well as perform unsupervised analysis of large datasets to shed light on the physicochemical signatures of poorly characterized proteins such as the ones belonging to emergent pathogens.


Subject(s)
Proteins , Proteins/metabolism
7.
iScience ; 26(10): 107919, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37822503

ABSTRACT

Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 µM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 µM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.

8.
Reprod Biomed Online ; 47(5): 103289, 2023 11.
Article in English | MEDLINE | ID: mdl-37657301

ABSTRACT

RESEARCH QUESTION: Do microRNAs (miRNAs) play a role in regulating endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) in decidualized cells and endometrium associated with reproductive failures? DESIGN: Endometrial stromal cell line St-T1b was decidualized in vitro with 8-Br-cAMP over 5 days, or treated with the ERS inducer thapsigargin. Expression of ERS sensors, UPR markers and potential miRNA regulators was analysed by quantitative PCR. Endometrial biopsies from patients with recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) were investigated for the location of miRNA expression. RESULTS: Decidualization of St-T1b cells resulted in increased expression of ERS sensors including ATF6α, PERK and IRE1α, and the UPR marker, CHOP. TXNIP, which serves as a link between the ERS pathway and inflammation, as well as inflammasome NLRP3 and interleukin 1ß expression increased in decidualized cells. An in-silico analysis identified miR-17-5p, miR-21-5p and miR-193b-3p as miRNAs potentially involved in regulation of the ERS/UPR pathways and inflammation associated with embryo implantation. Their expression decreased significantly (P ≤ 0.0391) in non-decidualized cells in the presence of thapsigargin. Finally, expression of the selected miRNAs was localized by in-situ hybridization in stromal and glandular epithelial cells in endometrial samples from patients with RPL and RIF. Expression in stroma cells from patients with RPL was lower in comparison with stroma cells from patients with RIF. CONCLUSIONS: Decidualization in St-T1b cells is accompanied by ERS/UPR processes, associated with an inflammatory response that is potentially influenced by miR-17-5p, miR-21-5p and miR-193b-3p. These miRNAs are expressed differentially in stromal cells from patients with RPL and RIF, indicating an alteration in regulation of the ERS/UPR pathways.


Subject(s)
Abortion, Habitual , MicroRNAs , Pregnancy , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Endoribonucleases/metabolism , Thapsigargin/metabolism , Protein Serine-Threonine Kinases/metabolism , Endometrium/metabolism , Endoplasmic Reticulum Stress , Unfolded Protein Response , Abortion, Habitual/pathology , Inflammation/metabolism
10.
J Chem Inf Model ; 63(9): 2609-2627, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37100031

ABSTRACT

During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Entropy , Chorismate Mutase , Models, Biological , Quantum Theory
11.
Sci Signal ; 16(769): eabo7588, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693130

ABSTRACT

Phosphorylation carries chemical information in biological systems. In two-component systems (TCSs), the sensor histidine kinase and the response regulator are connected through phosphoryl transfer reactions that may be uni- or bidirectional. Directionality enables the construction of complex regulatory networks that optimize signal propagation and ensure the forward flow of information. We combined x-ray crystallography, hybrid quantum mechanics/molecular mechanics (QM/MM) simulations, and systems-integrative kinetic modeling approaches to study phosphoryl flow through the Bacillus subtilis thermosensing TCS DesK-DesR. The allosteric regulation of the histidine kinase DesK was critical to avoid back transfer of phosphoryl groups and futile phosphorylation-dephosphorylation cycles by isolating phosphatase, autokinase, and phosphotransferase activities. Interactions between the kinase's ATP-binding domain and the regulator's receiver domain placed the regulator in two distinct positions in the phosphotransferase and phosphatase complexes, thereby determining whether a key glutamine residue in DesK was properly situated to assist in the dephosphorylation reaction. Moreover, an energetically unfavorable phosphotransferase conformation when DesK was not phosphorylated minimized reverse phosphoryl transfer. DesR dimerization and a dissociative phosphoryl transfer reaction also enforced the direction of phosphoryl flow. Shorter or longer distances between the phosphoryl acceptor and donor residues shifted the phosphoryl transfer equilibrium by modulating the stabilizing effect of the Mg2+ cofactor. These mechanisms control the directionality of signal transmission and show how structure-encoded allostery stores and transmits information in signaling systems.


Subject(s)
Bacillus subtilis , Signal Transduction , Histidine Kinase/metabolism , Bacillus subtilis/genetics , Phosphorylation , Phosphoric Monoester Hydrolases , Bacterial Proteins/metabolism
12.
Virus Res ; 325: 199035, 2023 02.
Article in English | MEDLINE | ID: mdl-36586487

ABSTRACT

INTRODUCTION: Coinfection with two SARS-CoV-2 viruses is still a very understudied phenomenon. Although next generation sequencing methods are very sensitive to detect heterogeneous viral populations in a sample, there is no standardized method for their characterization, so their clinical and epidemiological importance is unknown. MATERIAL AND METHODS: We developed VICOS (Viral COinfection Surveillance), a new bioinformatic algorithm for variant calling, filtering and statistical analysis to identify samples suspected of being mixed SARS-CoV-2 populations from a large dataset in the framework of a community genomic surveillance. VICOS was used to detect SARS-CoV-2 coinfections in a dataset of 1,097 complete genomes collected between March 2020 and August 2021 in Argentina. RESULTS: We detected 23 cases (2%) of SARS-CoV-2 coinfections. Detailed study of VICOS's results together with additional phylogenetic analysis revealed 3 cases of coinfections by two viruses of the same lineage, 2 cases by viruses of different genetic lineages, 13 were compatible with both coinfection and intra-host evolution, and 5 cases were likely a product of laboratory contamination. DISCUSSION: Intra-sample viral diversity provides important information to understand the transmission dynamics of SARS-CoV-2. Advanced bioinformatics tools, such as VICOS, are a necessary resource to help unveil the hidden diversity of SARS-CoV-2.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2/genetics , Phylogeny , Genome, Viral , Computational Biology , Consensus Sequence
13.
Front Immunol ; 13: 832306, 2022.
Article in English | MEDLINE | ID: mdl-36091026

ABSTRACT

Neutrophils play major roles against bacteria and fungi infections not only due to their microbicide properties but also because they release mediators like Interleukin-1 beta (IL-1ß) that contribute to orchestrate the inflammatory response. This cytokine is a leaderless protein synthesized in the cytoplasm as a precursor (pro-IL-1ß) that is proteolytically processed to its active isoform and released from human neutrophils by secretory autophagy. In most myeloid cells, pro-IL-1ß is processed by caspase-1 upon inflammasome activation. Here we employed neutrophils from both healthy donors and patients with a gain-of-function (GOF) NLRP3-mutation to dissect IL-1ß processing in these cells. We found that although caspase-1 is required for IL-1ß secretion, it undergoes rapid inactivation, and instead, neutrophil serine proteases play a key role in pro-IL-1ß processing. Our findings bring to light distinctive features of the regulation of caspase-1 activity in human neutrophils and reveal new molecular mechanisms that control human neutrophil IL-1ß secretion.


Subject(s)
Autophagy , Caspase 1 , Interleukin-1beta , Neutrophils , Serine Proteases , Autophagy/genetics , Autophagy/immunology , Caspase 1/genetics , Caspase 1/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Neutrophils/enzymology , Neutrophils/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Proteases/genetics , Serine Proteases/immunology
14.
J Chem Inf Model ; 62(15): 3577-3588, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35853201

ABSTRACT

Protein-protein interactions (PPIs) are essential, and modulating their function through PPI-targeted drugs is an important research field. PPI sites are shallow protein surfaces readily accessible to the solvent, thus lacking a proper pocket to fit a drug, while their lack of endogenous ligands prevents drug design by chemical similarity. The development of PPI-blocking compounds is, therefore, a tough challenge. Mixed solvent molecular dynamics has been shown to reveal protein-ligand interaction hot spots in protein active sites by identifying solvent sites (SSs). Furthermore, our group has shown that SSs significantly improve protein-ligand docking. In the present work, we extend our analysis to PPI sites. In particular, we analyzed water, ethanol, and phenol-derived sites in terms of their capacity to predict protein-drug and protein-protein interactions. Subsequently, we show how this information can be incorporated to improve both protein-ligand and protein-protein docking. Finally, we highlight the presence of aromatic clusters as key elements of the corresponding interactions.


Subject(s)
Proteins , Binding Sites , Ligands , Molecular Docking Simulation , Protein Binding , Proteins/chemistry , Solvents/chemistry
15.
J Med Chem ; 65(14): 9691-9705, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35737472

ABSTRACT

Computer-aided drug discovery methods play a major role in the development of therapeutically important small molecules, but their performance needs to be improved. Molecular dynamics simulations in mixed solvents are useful in understanding protein-ligand recognition and improving molecular docking predictions. In this work, we used ethanol as a cosolvent to find relevant interactions for ligands toward protein kinase G, an essential protein of Mycobacterium tuberculosis (Mtb). We validated the hot spots by screening a database of fragment-like compounds and another one of known kinase inhibitors. Next, we performed a pharmacophore-guided docking simulation and found three low micromolar inhibitors, including one with a novel chemical scaffold that we expanded to four derivative compounds. Binding affinities were characterized by intrinsic fluorescence quenching assays, isothermal titration calorimetry, and the analysis of melting curves. The predicted binding mode was confirmed by X-ray crystallography. Finally, the compounds significantly inhibited the viability of Mtb in infected THP-1 macrophages.


Subject(s)
Mycobacterium tuberculosis , Binding Sites , Cyclic GMP-Dependent Protein Kinases , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/pharmacology
16.
Front Pediatr ; 10: 887658, 2022.
Article in English | MEDLINE | ID: mdl-35722485

ABSTRACT

Pubertal delay in males is frequently due to constitutional delay of growth and puberty, but pathologic hypogonadism should be considered. After general illnesses and primary testicular failure are ruled out, the main differential diagnosis is central (or hypogonadotropic) hypogonadism, resulting from a defective function of the gonadotropin-releasing hormone (GnRH)/gonadotropin axis. Ciliopathies arising from defects in non-motile cilia are responsible for developmental disorders affecting the sense organs and the reproductive system. WDR11-mediated signaling in non-motile cilia is critical for fetal development of GnRH neurons. Only missense variants of WDR11 have been reported to date in patients with central hypogonadism, suggesting that nonsense variants could lead to more complex phenotypes. We report the case of a male patient presenting with delayed puberty due to Kallmann syndrome (central hypogonadism associated with hyposmia) in whom the next-generation sequencing analysis identified a novel heterozygous base duplication, leading to a frameshift and a stop codon in the N-terminal region of WDR11. The variant was predicted to undergo nonsense-mediated decay and classified as probably pathogenic following the American College of Medical Genetics and Genomics (ACMG) criteria. This is the first report of a variant in the WDR11 N-terminal region predicted to lead to complete expression loss that, contrary to expectations, led to a mild form of ciliopathy resulting in isolated Kallmann syndrome.

17.
Front Endocrinol (Lausanne) ; 13: 849279, 2022.
Article in English | MEDLINE | ID: mdl-35574033

ABSTRACT

Gliomas are the most frequent solid tumors in children. Among these, high-grade gliomas are less common in children than in adults, though they are similar in their aggressive clinical behavior. In adults, glioblastoma is the most lethal tumor of the central nervous system. Insulin-like growth factor 1 receptor (IGF1R) plays an important role in cancer biology, and its nuclear localization has been described as an adverse prognostic factor in different tumors. Previously, we have demonstrated that, in pediatric gliomas, IGF1R nuclear localization is significantly associated with high-grade tumors, worst clinical outcome, and increased risk of death. Herein we explore the role of IGF1R intracellular localization by comparing two glioblastoma cell lines that differ only in their IGF1R capacity to translocate to the nucleus. In vitro, IGF1R nuclear localization enhances glioblastoma cell motility and metabolism without affecting their proliferation. In vivo, IGF1R has the capacity to translocate to the nucleus and allows not only a higher proliferation rate and the earlier development of tumors but also renders the cells sensitive to OSI906 therapy. With this work, we provide evidence supporting the implications of the presence of IGF1R in the nucleus of glioma cells and a potential therapeutic opportunity for patients harboring gliomas with IGF1R nuclear localization.


Subject(s)
Glioblastoma , Glioma , Adult , Carcinogenesis/metabolism , Cell Nucleus/metabolism , Child , Glioblastoma/metabolism , Glioma/metabolism , Humans , Receptors, Somatomedin/metabolism
18.
Redox Biol ; 52: 102316, 2022 06.
Article in English | MEDLINE | ID: mdl-35489241

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and responds to host-derived gasotransmitters NO and CO via heme-containing sensor kinases DosS and DosT and the response regulator DosR. Hydrogen sulfide (H2S) is an important signaling molecule in mammals, but its role in Mtb physiology is unclear. We have previously shown that exogenous H2S can modulate expression of genes in the Dos dormancy regulon via an unknown mechanism(s). Here, we test the hypothesis that Mtb senses and responds to H2S via the DosS/T/R system. Using UV-Vis and EPR spectroscopy, we show that H2S binds directly to the ferric (Fe3+) heme of DosS (KDapp = 5.30 µM) but not the ferrous (Fe2+) form. No interaction with DosT(Fe2+-O2) was detected. We found that the binding of sulfide can slowly reduce the DosS heme iron to the ferrous form. Steered Molecular Dynamics simulations show that H2S, and not the charged HS- species, can enter the DosS heme pocket. We also show that H2S increases DosS autokinase activity and subsequent phosphorylation of DosR, and H2S-mediated increases in Dos regulon gene expression is lost in Mtb lacking DosS. Finally, we demonstrate that physiological levels of H2S in macrophages can induce DosR regulon genes via DosS. Overall, these data reveal a novel mechanism whereby Mtb senses and responds to a third host gasotransmitter, H2S, via DosS(Fe3+). These findings highlight the remarkable plasticity of DosS and establish a new paradigm for how bacteria can sense multiple gasotransmitters through a single heme sensor kinase.


Subject(s)
Gasotransmitters , Mycobacterium tuberculosis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Dioctyl Sulfosuccinic Acid/metabolism , Gasotransmitters/metabolism , Gene Expression Regulation, Bacterial , Heme/metabolism , Iron/metabolism , Mammals/genetics , Mammals/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protamine Kinase/chemistry , Protamine Kinase/genetics , Protamine Kinase/metabolism , Regulon
19.
J Chem Inf Model ; 62(7): 1723-1733, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35319884

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.


Subject(s)
Mycobacterium tuberculosis , Bacterial Proteins/chemistry , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Serine , Threonine/metabolism
20.
J Clin Immunol ; 42(5): 975-985, 2022 07.
Article in English | MEDLINE | ID: mdl-35338423

ABSTRACT

BACKGROUND: Autosomal recessive (AR) complete IRF8 deficiency is a rare severe inborn error of immunity underlying an absence of blood myeloid mononuclear cells, intracerebral calcifications, and multiple infections. Only three unrelated patients have been reported. MATERIALS AND METHODS: We studied an Argentinian child with multiple infectious diseases and severe pulmonary alveolar proteinosis (PAP). We performed whole-exome sequencing (WES) and characterized his condition by genetic, immunological, and clinical means. RESULTS: The patient was born and lived in Argentina. He had a history of viral pulmonary diseases, disseminated disease due to bacillus Calmette-Guérin (BCG), PAP, and cerebral calcifications. He died at the age of 10 months from refractory PAP. WES identified two compound heterozygous variants in IRF8: c.55del and p.R111*. In an overexpression system, the p.R111* cDNA was loss-of-expression, whereas the c.55del cDNA yielded a protein with a slightly lower molecular weight than the wild-type protein. The mutagenesis of methionine residues downstream from c.55del revealed a re-initiation of translation. However, both variants were loss-of-function in a luciferase assay, suggesting that the patient had AR complete IRF8 deficiency. The patient had no blood monocytes or dendritic cells, associated with neutrophilia, and normal counts of NK and other lymphoid cell subsets. CONCLUSION: We describe the fourth patient with AR complete IRF8 deficiency. This diagnosis should be considered in children with PAP, which is probably due to the defective development or function of alveolar macrophages.


Subject(s)
Communicable Diseases , Pulmonary Alveolar Proteinosis , Child , DNA, Complementary , Humans , Infant , Interferon Regulatory Factors/genetics , Male , Monocytes , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...