Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pathol ; 258(3): 312-324, 2022 11.
Article in English | MEDLINE | ID: mdl-36148647

ABSTRACT

Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Liver Diseases , Liver Regeneration , Albumins/metabolism , Albumins/pharmacology , Animals , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Aromatic-L-Amino-Acid Decarboxylases/pharmacology , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cell Adhesion Molecule/pharmacology , ErbB Receptors/metabolism , Hepatocytes/pathology , Humans , Liver/pathology , Liver Diseases/pathology , Liver Regeneration/physiology , Mice , Mice, Transgenic , Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-akt/metabolism
2.
J Cell Sci ; 133(24)2020 12 23.
Article in English | MEDLINE | ID: mdl-33288548

ABSTRACT

Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptor, trkB , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Endopeptidases , Endosomal Sorting Complexes Required for Transport , Hippocampus/metabolism , Humans , Membrane Glycoproteins , Neurons/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Signal Transduction , Ubiquitin Thiolesterase/genetics
3.
J Biol Chem ; 291(36): 19132-45, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27445338

ABSTRACT

Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.


Subject(s)
Cell Differentiation/physiology , Endosomal Sorting Complexes Required for Transport/metabolism , Gene Expression Regulation/physiology , KCNQ2 Potassium Channel/biosynthesis , KCNQ3 Potassium Channel/biosynthesis , Neural Stem Cells/metabolism , Receptor, trkA/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Endosomal Sorting Complexes Required for Transport/genetics , HEK293 Cells , Humans , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/genetics , Mice , Nedd4 Ubiquitin Protein Ligases , Neural Stem Cells/cytology , PC12 Cells , Protein Binding , Rats , Receptor, trkA/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Protein Ligases/genetics
4.
J Neurosci ; 35(18): 7190-202, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25948268

ABSTRACT

The development of the nervous system is a temporally and spatially coordinated process that relies on the proper regulation of the genes involved. Neurotrophins and their receptors are directly responsible for the survival and differentiation of sensory and sympathetic neurons; however, it is not fully understood how genes encoding Trk neurotrophin receptors are regulated. Here, we show that rat Bex3 protein specifically regulates TrkA expression by acting at the trkA gene promoter level. Bex3 dimerization and shuttling to the nucleus regulate the transcription of the trkA promoter under basal conditions and also enhance nerve growth factor (NGF)-mediated trkA promoter activation. Moreover, qChIP assays indicate that Bex3 associates with the trkA promoter within a 150 bp sequence, immediately upstream from the transcription start site, which is sufficient to mediate the effects of Bex3. Consequently, the downregulation of Bex3 using shRNA increases neuronal apoptosis in NGF-dependent sensory neurons deprived of NGF and compromises PC12 cell differentiation in response to NGF. Our results support an important role for Bex3 in the regulation of TrkA expression and in NGF-mediated functions through modulation of the trkA promoter.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Cell Differentiation/physiology , Nerve Growth Factor/pharmacology , Protein Multimerization/physiology , Receptor, trkA/biosynthesis , Transcription, Genetic/physiology , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , Nerve Growth Factor/physiology , Neurons/drug effects , Neurons/physiology , Protein Multimerization/drug effects , Rats , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...