Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(24): 16809-16820, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784408

ABSTRACT

Understanding the competing processes that govern far ultraviolet photodissociation (FUV-PD) of biopolymers such as proteins is a challenge. Here, we report a combined experimental and theoretical investigation of FUV-PD of protonated leucine-enkephalin pentapeptide ([YGGFL + H]+) in the gas-phase. Time-dependent density functional theory (TD-DFT) calculations in combination with experiments and previous results for amino acids and shorter peptides help in rationalizing the evolution of the excited states. The results confirm that fragmentation of [YGGFL + H]+ results mainly from vibrationally excited species in the ground electronic state, populated after internal conversion. We also propose fragmentation mechanisms for specific photo-fragments such as tyrosine side chain loss (with an extra hydrogen) or hydrogen loss. In general, we observe the same mechanisms as for smaller peptides or protonated Tyr and Phe, that are not quenched by the presence of other amino acids. Nevertheless, we also found some differences, as for H loss, in part due to the fact that the charge is solvated by the peptide chain and not only by the COOH terminal group.

2.
J Am Chem Soc ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36757329

ABSTRACT

An ambimodal transition state (TS) that leads to formation of four different pericyclic reaction products ([4 + 6]-, [2 + 8]-, [8 + 2]-, and [6 + 4]-cycloadducts) without any intervening minima has been designed and explored with DFT computations and quasiclassical molecular dynamics. Direct dynamics simulations propagated from the ambimodal TS show the evolution of trajectories to give the four cycloadducts. The topography of the PES is a key factor in product selectivity. A good correlation is observed between geometrical resemblance of the products to the ambimodal TS (measured by the RMSD) and the ratio of products formed in the dynamics simulations.

3.
ACS Appl Mater Interfaces ; 13(21): 24877-24886, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33960195

ABSTRACT

The encapsulation of an organic dye, 10-phenylphenothiazine (PTH), in the inner cavity of single-walled carbon nanotubes (SWNTs) as a breaking heterogenization strategy is presented. The PTH@oSWNT material was microscopically and spectroscopically characterized, showing intense photoemission when illuminated with visible light at the nanoscale. Thus, PTH@oSWNT was employed as a heterogeneous photocatalyst in single electron transfer dehalogenation reactions under visible light irradiation. The material showed an enhanced photocatalytic activity, achieving turnover numbers as high as 3200, with complete recyclability and stability for more than eight cycles. Computational calculations confirm that electronic communication between both partners is established because, upon illumination, an electron of the excited PTH is transferred from the π system of the molecule to the delocalized π-cloud of the SWNT, thus justifying the enhanced photocatalytic activity.

4.
J Am Soc Mass Spectrom ; 31(1): 2-24, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-32881516

ABSTRACT

In this article, a perspective is given of chemical dynamics simulations of collisions of biological ions with surfaces and of collision-induced dissociation (CID) of ions. The simulations provide an atomic-level understanding of the collisions and, overall, are in quite good agreement with experiment. An integral component of ion/surface collisions is energy transfer to the internal degrees of freedom of both the ion and the surface. The simulations reveal how this energy transfer depends on the collision energy, incident angle, biological ion, and surface. With energy transfer to the ion's vibration fragmentation may occur, i.e. surface-induced dissociation (SID), and the simulations discovered a new fragmentation mechanism, called shattering, for which the ion fragments as it collides with the surface. The simulations also provide insight into the atomistic dynamics of soft-landing and reactive-landing of ions on surfaces. The CID simulations compared activation by multiple "soft" collisions, resulting in random excitation, versus high energy single collisions and nonrandom excitation. These two activation methods may result in different fragment ions. Simulations provide fragmentation products in agreement with experiments and, hence, can provide additional information regarding the reaction mechanisms taking place in experiment. Such studies paved the way on using simulations as an independent and predictive tool in increasing fundamental understanding of CID and related processes.


Subject(s)
Mass Spectrometry/methods , Models, Chemical , Peptides/chemistry , Energy Transfer , Formamides/chemistry , Ions/chemistry , Molecular Dynamics Simulation , Surface Properties
5.
Chem Sci ; 10(15): 4346-4351, 2019 Apr 21.
Article in English | MEDLINE | ID: mdl-31057762

ABSTRACT

In this work we have found that a BODIPY can be used as an electron withdrawing group for the activation of double bonds in asymmetric catalysis. The synthesis of cyclohexyl derivatives containing a BODIPY unit can easily be achieved via trienamine catalysis. This allows a new different asymmetric synthesis of BODIPY derivatives and opens the door to future transformation of this useful fluorophore. In addition, the Quantum Chemistry calculations and mechanistic studies provide insights into the role of BODIPY as an EWG.

6.
Chem Commun (Camb) ; 54(27): 3399-3402, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29557452

ABSTRACT

The addition of nucleophilic imines, using 2-hydroxybenzophenone as a chemical auxiliary, is presented. An intramolecular six-membered ring via hydrogen bonding that enhances the reactivity and selectivity is the key of this strategy, which is supported by DFT calculations and experimental trials.

7.
Angew Chem Int Ed Engl ; 57(19): 5350-5354, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29493860

ABSTRACT

An organocatalytic system is presented for the Michael addition of monoactivated glycine ketimine ylides with a bifunctional catalyst. The ketimine bears an ortho hydroxy group, which increases the acidity of the methylene hydrogen atoms and enhances the reactivity, thus allowing the synthesis of a large variety of α,γ-diamino acid derivatives with excellent stereoselectivity.

8.
J Phys Chem A ; 122(10): 2612-2625, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29451797

ABSTRACT

Dissociation chemistry of the diproline anion [Pro2-H]- is studied using chemical dynamics simulations coupled with quantum-chemical calculations and RRKM analysis. Pro2- is chosen due to its reduced size and the small number of sites where deprotonation can take place. The mechanisms leading to the two dominant collision-induced dissociation (CID) product ions are elucidated. Trajectories from a variety of isomers of [Pro2-H]- were followed in order to sample a larger range of possible reactivity. While different mechanisms yielding y1- product ions are proposed, there is only one mechanism yielding the b2- ion. This mechanism leads to formation of a b2- fragment with a diketopiperazine structure. The sole formation of a diketopiperazine b2 sequence ion is experimentally confirmed by infrared ion spectroscopy of the fragment anion. Furthermore, collisional and internal energy activation simulations are used in parallel to identify the different dynamical aspects of the observed reactivity.

9.
Phys Chem Chem Phys ; 20(5): 3614-3629, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29340378

ABSTRACT

Gas phase unimolecular fragmentation of the two model doubly protonated tripeptides threonine-isoleucine-lysine (TIK) and threonine-leucine-lysine (TLK) is studied using chemical dynamics simulations. Attention is focused on different aspects of collision induced dissociation (CID): fragmentation pathways, energy transfer, theoretical mass spectra, fragmentation mechanisms, and the possibility of distinguishing isoleucine (I) and leucine (L). Furthermore, discussion is given regarding the differences between single collision CID activation, which results from a localized impact between the ions and a colliding molecule N2, and previous thermal activation simulation results; Z. Homayoon, S. Pratihar, E. Dratz, R. Snider, R. Spezia, G. L. Barnes, V. Macaluso, A. Martin-Somer and W. L. Hase, J. Phys. Chem. A, 2016, 120, 8211-8227. Upon thermal activation unimolecular fragmentation is statistical and in accord with RRKM unimolecular rate theory. Simulations show that in collisional activation some non-statistical fragmentation occurs, including shattering, which is not present when the ions dissociate statistically. Products formed by non-statistical shattering mechanisms may be related to characteristic mass spectrometry peaks which distinguish the two isomers I and L.


Subject(s)
Oligopeptides/chemistry , Amino Acid Sequence , Energy Transfer , Ions/chemistry , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization
10.
Philos Trans A Math Phys Eng Sci ; 375(2092)2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28320901

ABSTRACT

In the present contribution, we have summarized our recent work on the comprehension of [Ca(formamide)]2+ complex gas-phase unimolecular dissociation. By using different theoretical approaches, we were able to revise the original (and typical for such kind of problems) understanding given in terms of stationary points on the potential energy surface, which did not provide a satisfactory explanation of the experimentally observed reactivity. In particular, we point out how non-statistical and non-intrinsic reaction coordinate mechanisms are of fundamental importance.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

11.
Faraday Discuss ; 195: 599-618, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27711796

ABSTRACT

In the present work we have investigated mechanisms of gas phase unimolecular dissociation of a relatively simple dipeptide, the di-proline anion, by means of chemical dynamics simulations, using the PM3 semi-empirical Hamiltonian. In particular, we have considered two activation processes that are representative limits of what occurs in collision induced dissociation experiments: (i) thermal activation, corresponding to several low energy collisions, in which the system is prepared with a microcanonical distribution of energy; (ii) collisional activation where a single shock of hundreds of kcal mol-1 (300 kcal mol-1 in the present case) can transfer sufficient energy to allow dissociation. From these two activation processes we obtained different product abundances, and for one particular fragmentation pathway a clear mechanistic difference for the two activation processes. This mechanism corresponds to the leaving of an OH- group and subsequent formation of water by taking a proton from the remaining molecule. This last reaction is always observed in thermal activation while in collisional activation it is less favoured and the formation of OH- as a final product is observed. More importantly, we show that while in thermal activation unimolecular dissociation follows exponential decay, in collision activation the initial population decays with non-exponential behaviour. Finally, from the thermal activation simulations it was possible to obtain rate constants as a function of temperature that show Arrhenius behaviour. Thus activation energies have also been extracted from these simulations.

12.
J Phys Chem A ; 120(42): 8211-8227, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27673376

ABSTRACT

Direct dynamics simulations, utilizing the RM1 semiempirical electronic structure theory, were performed to study the thermal dissociation of the doubly protonated tripeptide threonine-isoleucine-lysine ion, TIK(H+)2, for temperatures of 1250-2500 K, corresponding to classical energies of 1778-3556 kJ/mol. The number of different fragmentation pathways increases with increase in temperature. At 1250 K there are only three fragmentation pathways, with one contributing 85% of the fragmentation. In contrast, at 2500 K, there are 61 pathways, and not one dominates. The same ion is often formed via different pathways, and at 2500 K there are only 14 m/z values for the product ions. The backbone and side-chain fragmentations occur by concerted reactions, with simultaneous proton transfer and bond rupture, and also by homolytic bond ruptures without proton transfer. For each temperature the TIK(H+)2 fragmentation probability versus time is exponential, in accord with the Rice-Ramsperger-Kassel-Marcus and transition state theories. Rate constants versus temperature were determined for two proton transfer and two bond rupture pathways. From Arrhenius plots activation energies Ea and A-factors were determined for these pathways. They are 62-78 kJ/mol and (2-3) × 1012 s-1 for the proton transfer pathways and 153-168 kJ/mol and (2-4) × 1014 s-1 for the bond rupture pathways. For the bond rupture pathways, the product cation radicals undergo significant structural changes during the bond rupture as a result of hydrogen bonding, which lowers their entropies and also their Ea and A parameters relative to those for C-C bond rupture pathways in hydrocarbon molecules. The Ea values determined from the simulation Arrhenius plots are in very good agreement with the reaction barriers for the RM1 method used in the simulations. A preliminary simulation of TIK(H+)2 collision-induced dissociation (CID), at a collision energy of 13 eV (1255 kJ/mol), was also performed to compare with the thermal dissociation simulations. Though the energy transferred to TIK(H+)2 in the collisions is substantially less than the energy for the thermal excitations, there is substantial fragmentation as a result of the localized, nonrandom excitation by the collisions. CID results in different fragmentation pathways with a significant amount of short time nonstatistical fragmentation. Backbone fragmentation is less important, and side-chain fragmentation is more important for the CID simulations as compared to the thermal simulations. The thermal simulations provide information regarding the long-time statistical fragmentation.

13.
J Chem Theory Comput ; 12(3): 974-82, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26820235

ABSTRACT

Beyond the established use of thermodynamic vs kinetic control to explain chemical reaction selectivity, the concept of bifurcations on a potential energy surface (PES) is proving to be of pivotal importance with regard to selectivity. In this article, we studied by means of post-transition state (TS) direct dynamics simulations the effect that vibrational and rotational excitation at the TS may have on selectivity on a bifurcating PES. With this aim, we studied the post-TS unimolecular reactivity of the [Ca(formamide)](2+) ion, for which Coulomb explosion and neutral loss reactions compete. The PES exhibits different kinds of nonintrinsic reaction coordinate (IRC) dynamics, among them PES bifurcations, which direct the trajectories to multiple reaction paths after passing the TS. Direct dynamics simulations were used to distinguish between the bifurcation non-IRC dynamics and non-IRC dynamics arising from atomistic motions directing the trajectories away from the IRC. Overall, we corroborated the idea that kinetic selectivity often does not reduce to a simple choice between paths with different barrier heights and instead dynamical behavior after passing the TS may be crucial. Importantly, rotational excitation may play a pivotal role on the reaction selectivity favoring nonthermodynamic products.

14.
Dalton Trans ; 44(3): 1193-202, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25415658

ABSTRACT

The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids.

15.
J Phys Chem A ; 118(46): 10882-93, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25333680

ABSTRACT

By combining chemical dynamics simulations and RRKM statistical theory we have characterized collision induced dissociation (CID) mechanisms of [M(formamide)](2+) ions (M = Ca, Sr) at different timescales, from few femtoseconds to microseconds. Chemical dynamics simulations account for the short-time and dynamically driven reactivity, such as impulsive collision mechanism for formamide neutral loss. From the simulations, we also got the amounts of energy transferred during the collision and, especially important, the vibrational and rotational energy distributions of the ions that did not react during the simulation time length of 2.5 ps. These internal energy distributions were in turn used in combination with RRKM theory to estimate the rate constants of the possible reactive pathways. Hence, we performed a statistical analysis of the CID dynamics accounting for the long-time and statistical reactivity (i.e., through an IVR mechanism). This multiscale approach allowed us to account for all the products observed in the CID experimental spectra of [Ca(formamide)](2+) and [Sr(formamide)](2+) doubly charged cations, as well as the differences between them.


Subject(s)
Models, Statistical , Molecular Dynamics Simulation , Organometallic Compounds/chemistry , Calcium/chemistry , Formamides/chemistry , Strontium/chemistry
16.
Chemphyschem ; 15(11): 2288-94, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24888891

ABSTRACT

The relative stability of the radicals that can be produced from amine-boranes and phosphine-boranes is investigated at the G3-RAD level of theory. Aminyl ([RNH](.) :BH3 ) and phosphinyl ([RPH](.) :BH3 ) radicals are systematically more stable than the boryl analogues, [RNH2 ]:BH2 (.) and [RPH2 ]:BH2 (.) . Despite similar stability trends for [RNH](.) :BH3 and [RPH](.) :BH3 radicals with respect to boryl radicals, there are significant dissimilarities between amine- and phosphine-boranes. The homolytic bond dissociation energy of the NH bond decreases upon association of the amines with BH3 , whereas that of the PH bond for phosphines increases. The stabilization of the free amine is much smaller than that of the corresponding aminyl radical, whereas for phosphines this is the other way around. The homolytic bond dissociation energy of the BH bond of borane decreases upon complexation with both amines and phosphines.

17.
Phys Chem Chem Phys ; 16(28): 14813-25, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24921953

ABSTRACT

A kinetic study of the unimolecular reactivity of formamide-M(2+) (M = Ca, Sr) systems was carried out by means of RRKM statistical theory using high-level DFT. The results predict M(2+), [M(NH2)](+) and [HCO](+) as the main products, together with an intermediate that could eventually evolve to produce [M(NH3)](2+) and CO, for high values of internal energy. In this framework, we also evaluated the influence of the external rotational energy on the reaction rate constants. In order to find a method to perform reliable electronic structure calculations for formamide-M(2+) (M = Ca, Sr) at a relatively low computational cost, an assessment of different methods was performed. In the first assessment twenty-one functionals, belonging to different DFT categories, and an MP2 wave function method using a small basis set were evaluated. CCSD(T)/cc-pWCVTZ single point calculations were used as reference. A second assessment has been performed on geometries and energies. We found BLYP/6-31G(d) and G96LYP/6-31+G(d,p) as the best performing methods, for formamide-Ca(2+) and formamide-Sr(2+), respectively. Furthermore, a detailed assessment was done on RRKM reactivity and G96LYP/6-31G(d) provided results in agreement with higher level calculations. The combination of geometrical, energetics and kinetics (RRKM) criteria to evaluate DFT functionals is rather unusual and provides an original assessment procedure. Overall, we suggest using G96LYP as the best performing functional with a small basis set for both systems.


Subject(s)
Calcium/chemistry , Formamides/chemistry , Models, Statistical , Quantum Theory , Strontium/chemistry , Gases/chemistry , Kinetics
18.
Chemistry ; 18(49): 15699-705, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23060273

ABSTRACT

The gas-phase acidity of a series of amine-borane complexes has been investigated through the use of electrospray mass spectrometry (ESI-MS), with the application of the extended Cooks kinetic method, and high-level G4 ab initio calculations. The most significant finding is that typical nitrogen bases, such as aniline, react with BH(3) to give amine-borane complexes, which, in the gas phase, have acidities as high as those of either phosphoric, oxalic, or salicylic acid; their acidity is higher than many carboxylic acids, such as formic, acetic, and propanoic acid. Indeed the complexation of different amines with BH(3) leads to a substantial increase (from 167 to 195 kJ mol(-1)) in the intrinsic acidity of the system; in terms of ionization constants, this increase implies an increase as large as fifteen orders of magnitude. Interestingly, this increase in acidity is almost twice as large as that observed for the corresponding phosphine-borane analogues. The agreement between the experimental and the G4-based calculated values is excellent. The analysis of the electron-density rearrangements of the amine and the borane moieties indicates that the dative bond is significantly stronger in the N-deprotonated anion than in the corresponding neutral amine-borane complex, because the deprotonated amine is a much better electron donor than the neutral amine. On the top of that, the newly created lone pair on the nitrogen atom in the deprotonated species, conjugates with the BN bonding pair. The dispersion of the extra electron density into the BH(3) group also contributes to the increased stability of the deprotonated species.

19.
J Phys Chem A ; 116(25): 6950-4, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22630168

ABSTRACT

The complexes formed by the interaction between a series of phosphines R-PH(2) (R = H, CH(3), c-C(3)H(5), C(6)H(5)) and AlH(3) have been investigated through the use of high-level G4 ab initio calculations. These very stable complexes behave as much stronger acids than the isolated phosphines. This dramatic acidity enhancement, which can be as high as 174 kJ mol(-1), results from a much greater stabilization of the anionic deprotonated species with respect to the neutral one, upon AlH(3) association. This effect depends quantitatively on the nature of the substituent R and is smaller for R = C(6)H(5) because of the conjugation of the P lone pair with the aromatic system. More unexpectedly, however, the phosphine-alane complexes, RPH(2):AlH(3), are more acidic than the corresponding phosphine-borane RPH(2):BH(3) analogues. This unexpected result is due to the enhanced stability of the anionic deprotonated species for complexes involving AlH(3), because the delocalization of the newly created P lone pair with the P-Al bonding density is more favorable when the Lewis acid is aluminum trihydride than when it is borane.

SELECTION OF CITATIONS
SEARCH DETAIL
...