Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Ars pharm ; 64(4): 329-341, oct.-dic. 2023. ilus, tab, graf
Article in English | IBECS | ID: ibc-225992

ABSTRACT

Introducción: Los estudios de solubilidad y la obtención de datos fisicoquímicos de fármacos en disolventes puros pertenecientes a diferentes clases químicas resultan claves para desarrollar nuevas formulaciones de medicamentos. En este trabajo se calcularon los parámetros de solubilidad parciales de Hansen (HSP) para evaluar la miscibilidad y las interacciones intermoleculares del barnidipino en diecisiete disolventes puros. Además, se compararon los valores experimentales obtenidos con los teóricos calculados según la estructura del barnidipino, para analizar la influencia de las relaciones soluto-soluto, soluto-solvente de los grupos de contribución aditivos, en las propiedades químicas y físicas del barnidipino con los solventes de diferente polaridad ensayados, para aportar información relevante para su uso en la industria farmacéutica. Método: La solubilidad en equilibrio del barnidipino en los disolventes seleccionados se determinó usando el método clásico de agitación en matraces seguida de un análisis por espectrofotometría UV a 298,15 K, y se calcularon los parámetros parciales de solubilidad con la aplicación de métodos teóricos de contribución de grupo, propuestos por Hoftyzer-Van Krevelen y Fedors. El modelo KAT-LSER se usó para investigar el efecto del solvente basado en el concepto de relaciones de energía de solvatación lineal. La fracción molar se obtuvo considerando las densidades de las soluciones. Los análisis en fase sólida se realizaron por calorimetría diferencial de barrido. Resultados: La modificación introducida en el método de Hansen, es decir, el empleo de lnX2 como variable dependiente proporcionó excelentes resultados. Los valores más altos de solubilidad se han encontrado en los disolventes polares. Se observa que las interacciones intermoleculares solvente-solvente y soluto-solvente con enlaces de hidrógeno y fuerzas de van der Waals, influyeron significativamente en la solubilidad del fármaco. (AU)


Introduction: Solubility studies and obtaining physicochemical data on drugs in pure solvents belonging to differ-ent chemical classes are key to developing new drug formulations. In this work, Hansen partial solubility parame-ters (HSP) were calculated to assess the miscibility and intermolecular interactions of barnidipine in seventeen pure solvents. The comparison of the results obtained with the theoretical values calculated according to the structure of barnidipine, were valuable to analyse the influence of the solute-solute, solute-solvent relationships of the additive contribution groups, on the chemical and physical properties of this molecule with the solvents of different polarity tested, to provide relevant information highly useful in the pharmaceutical industry. Method: Equilibrium barnidipine solubilities in mono-solvents was determined using the classical shake-flask method, followed by UV-spectrophotometric analysis at 298.15 K. The partial solubility parameters were calculated by applying theoretical group contribution methods, proposed by Hoftyzer-Van Krevelen and Fedors. The KAT-LSER model was used to investigate the effect of solvent based on the concept of linear solvation energy relationships. The mole fraction was obtained from the densities of the solutions. Solid-phase analyses were made by calorimetry differential scanning. Results: The modification introduced in the extended Hansen method, that is, the use of lnX2 as the dependent variable, provided excellent results. The highest solubility values have been found in polar solvents. It is observed that solvent-solvent and solute-solvent intermolecular interactions through hydrogen bonds and van der Waals forces, significantly influence drug solubility (AU)


Subject(s)
Humans , Nifedipine , Drug Compounding , Solubility , Pharmaceutical Preparations/chemistry , Solvents
2.
Molecules ; 28(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37894697

ABSTRACT

Solubility is one of the most important physicochemical properties due to its involvement in physiological (bioavailability), industrial (design) and environmental (biotoxicity) processes, and in this regard, cosolvency is one of the best strategies to increase the solubility of poorly soluble drugs in aqueous systems. Thus, the aim of this research is to thermodynamically evaluate the dissolution process of triclocarban (TCC) in cosolvent mixtures of {N-methyl-2-pyrrolidone (NMP) + water (W)} at seven temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15 K). Solubility is determined by UV/vis spectrophotometry using the flask-shaking method. The dissolution process of the TCC is endothermic and strongly dependent on the cosolvent composition, achieving the minimum solubility in pure water and the maximum solubility in NMP. The activity coefficient decreases from pure water to NMP, reaching values less than one, demonstrating the excellent positive cosolvent effect of NMP, which is corroborated by the negative values of the Gibbs energy of transfer. In general terms, the dissolution process is endothermic, and the increase in TCC solubility may be due to the affinity of TCC with NMP, in addition to the water de-structuring capacity of NMP generating a higher number of free water molecules.

3.
Heliyon ; 9(6): e17402, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37426787

ABSTRACT

This investigation dealt with the thermodynamic properties, saturated solubility values, and solvation behavior of deferiprone as an oral iron chelator agent in non-aqueous mixtures of propylene glycol and 2-propanol using experimental measurements and mathematical correlations. The solubility of deferiprone demonstrated a positive correlation with both temperature and propylene glycol mass fraction. Four mathematical models were employed to correlate the solid-liquid equilibrium data, and the low mean relative deviation values of less than 3.6% illustrate the good agreement of computed data with the experimental data. The apparent thermodynamic behavior of deferiprone dissolution was also investigated according to van't Hoff and Gibbs equation.

5.
ACS Omega ; 8(14): 12761-12772, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065087

ABSTRACT

Rosuvastatin (RST) is a poorly water-soluble drug responsible for limited in vivo dissolution and subsequently low oral systemic absorption (poor bioavailability). The mole fraction solubility values of RST in various ratios of binary mixtures "{PEG400 (1) + water (2)}" at 298.15 K were employed to investigate the preferential solvation (PS) of RST (3) by the binary components. Moreover, the GastroPlus program predicted the drug dissolution/absorption rates, plasma drug concentration, and compartmental regional drug absorbed from a conventional tablet as compared to the RST-loaded (PEG400 + water) mixture (at x 1 = 0.5) in healthy subjects (considering the fast condition). Fedors' method was adopted to estimate the values of molar volume (314.8 cm3·mol-1) and Hildebrand solubility parameter (28.08 MPa1/2) of RST. The results of inverse Kirkwood-Buff integrals showed the PS of RST by PEG400 as observed in all studied ratios of the binary mixture. The highest PS value (δx 1,3 = 1.65 × 10-2) for RST by PEG400 was attained at x 1 = 0.5. Finally, the GastroPlus program predicted the maximum dissolution rate [20 mg within 15 min as compared to pure RST (1.5 mg within 15 min)]. Moreover, the program predicted increased in vivo oral absorption (1.2 µg/mL) and enhanced regional absorption (95.3%) of RST from upper segments of the gastrointestinal tract for the RST-loaded PEG400 + water mixture in humans as compared to conventional tablets (87.5% as total regional absorption and 0.88 µg/mL as in vivo absorption). Hence, the present binary system ferrying RST can be a promising strategy to control systemic dyslipidemia after oral or subcutaneous administration.

6.
ACS Omega ; 7(42): 37988-38002, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312332

ABSTRACT

Meloxicam is an analgesic and anti-inflammatory drug widely prescribed in current therapeutics that exhibits very low solubility in water. Thus, this physicochemical property has been studied in N-methyl-pyrrolidone (NMP)-aqueous mixtures at several temperatures to expand the solubility database about pharmaceutical compounds in aqueous-mixed solvents. The flask-shake method and UV-vis spectrophotometry were used for meloxicam solubility determination as a function of temperature and mixture composition. Several cosolvency models, including the Jouyban-Acree model, were challenged for equilibrium solubility correlation and/or prediction. The van't Hoff and Gibbs equations were employed here to calculate the apparent standard thermodynamic quantities for the dissolution and mixing processes of this drug in these aqueous mixtures. Inverse Kirkwood-Buff integrals were employed to calculate the preferential solvation parameters of meloxicam by NMP in all mixtures. Meloxicam equilibrium solubility increased with increasing temperature, and maximal solubilities were observed in neat NMP at all temperatures. The mole fraction solubility of meloxicam increased from 1.137 × 10-6 in neat water to 3.639 × 10-3 in neat NMP at 298.15 K. The Jouyban-Acree model correlated the meloxicam solubility in these mixtures very well. Dissolution processes were endothermic and entropy-driven in all cases, except in neat water, where nonenthalpy- nor entropy-driven was observed. Apparent Gibbs energies of dissolution varied from 34.35 kJ·mol-1 in pure water to 7.99 kJ·mol-1 in pure NMP at a mean harmonic temperature of 303.0 K. A nonlinear enthalpy-entropy relationship was observed in the plot of dissolution enthalpy vs dissolution Gibbs energy. Meloxicam is preferentially hydrated in water-rich mixtures but preferentially solvated by NMP in the composition interval of 0.16 < x 1 < 1.00.

7.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077585

ABSTRACT

The solubility of drugs in cosolvent systems of pharmaceutical interest is of great importance for understanding and optimizing a large number of processes. Here, we report the solubility of isoniazid in nine (PEG 200 + water) cosolvent mixtures at nine temperatures (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, and 318.15 K) determined by UV-vis spectrophotometry. From the solubility data, the thermodynamic solution, mixing, and transfer functions were calculated in addition to performing the enthalpy-entropy compensation analysis. The solubility of isoniazid depends on the concentration of PEG 200 (positive cosolvent effect) and temperature (endothermic process) reaching its maximum solubility in pure PEG 200 at 318.15 K and the lowest solubility in pure water at 278.15 K. The solution process is favored by the solution entropy and according to the enthalpy-entropy compensation analysis it is driven by entropy in mixtures rich in water and by enthalpy in mixtures rich in PEG 200.


Subject(s)
Isoniazid , Water , Solubility , Solvents , Temperature , Thermodynamics
8.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 151-156, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35818258

ABSTRACT

Antibiotic resistance in pathogenic bacteria to various types of antibiotics has resulted in the necessity of new effective strategies to get around this problem. In recent investigations, metal or metal oxide nanoparticles specifically silver nanoparticles (AgNPs) have been employed successfully to hinder antibiotic-resistant Gram-negative and Gram-positive bacteria. However, AgNPs at high concentrations have cytotoxicity for eukaryotic cells which, application of other biocompatible materials particularly plant secondary metabolites of curcumin and quercetin to reduce cytotoxicity is a critical affair. These compounds may be used directly or indirectly to produce AgNPs. In this regard, modified NPs by curcumin and quercetin have shown an increased therapeutic effect and biocompatibility and biodegredibility properties. Therefore, here, recent advances and challenges about antibacterial and biocompatibility properties of nanoformulation of AgNPs with curcumin and quercetin are presented.


Subject(s)
Curcumin , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Bacteria , Curcumin/pharmacology , Microbial Sensitivity Tests , Quercetin/pharmacology , Silver/pharmacology
9.
J Pharm Sci ; 111(10): 2758-2764, 2022 10.
Article in English | MEDLINE | ID: mdl-35908653

ABSTRACT

Mesalazine is a low-permeable and low-soluble drug, which makes it a class IV drug in the Biopharmaceutics Classification System. Hence, its solubilization can be helpful for various stages of formulation development. The purpose of this study was to investigate the solubilization manner and thermodynamics of mesalazine in ternary solvent combinations of {ethanol (1) + propylene glycol (2) + water (3)} using the shake-flask technique at (298.2-313.2) K. In the following, the mathematical representation of the acquired solubility data using some popular models was evaluated. The accuracies of the applied models were described by percentages of mean relative deviation (MRD%). Based on obtained results (MRD% < 10.0), it can be concluded that the trained models can adequately predict the solubility of mesalazine in the investigated ternary solvent combinations. The findings also revealed that the solution composition and temperatures greatly influence the solubility of mesalazine. In addition, the thermodynamic characteristics of the mesalazine dissolution process indicate that the mesalazine dissolution process is endothermic and entropy-driven. The generating data in the current work also expands the available solubility database for mesalazine in the solvent mixtures.


Subject(s)
Ethanol , Water , Mesalamine , Propylene Glycol , Solubility , Solvents , Temperature , Thermodynamics
10.
J Biotechnol ; 354: 63-71, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35724764

ABSTRACT

Probiotics are beneficial bacteria that have a significant effect on host health and they are widely used in preventing and treating diseases. Nowadays probiotics are present in food, drug and several commercial complement products. In recent years the use of probiotics in the nanotechnology area, especially in nanoparticle synthesis, has significantly been increased. In this review, after some introduction about probiotic and their advantages, all the nanoparticles produced by probiotics are reviewed and discussed. Furthermore, biosynthetic mechanisms of nanoparticles and its applications in cancer therapy, antibacterial and photo catalytic activities, are also discussed.


Subject(s)
Nanoparticles , Probiotics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Probiotics/therapeutic use
11.
ACS Omega ; 7(1): 1197-1210, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036782

ABSTRACT

(Z)-N-Benzyl-2-{2,4-dioxo-5-(4-prop-2-yl-1-yloxyl)benzylidene)thiazolin-3-yl)}acetamide (SE415) is a novel aldose reductase inhibitor used in the management of diabetes mellitus (DM) and associated complications. Herein, the drug was solubilized (mole fraction solubility) in a "PEG 400 (polyethylene glycol 400) + water" mixture of various ratios at 298.15 K. We reported the preferential solvation of SE415 by PEG 400 using Kirkwood-Buff integrals, the thermodynamic functional parameter, in vitro dissolution, and GastroPlus-based predictions for in vivo performance. The result of Hansen solubility parameter analysis suggested PEG 400 as a suitable solvent for SE415 solubilization at 298.0 K, followed by prediction of several physicochemical properties. In the preferential solvation study, the molar volume, Hildebrand solubility parameters, and the molecular radius of SE415 were estimated as 258.4 cm3·mol-1, 27.62 MPa1/2, and 0.468 nm, respectively, using Fedors' method. The inverse Kirkwood-Buff integrals indicated that the preferential solvation of SE415 by PEG 400 occurred in all studied ratios of the (PEG 400 + water) mixtures. The maximum value (δx 1,3 = 1.21 × 10-2) of the preferential solvation of SE415 by PEG 400 was achieved at x 1 = 0.15. Then, using GastroPlus software, the maximum dissolution, improved in vivo oral absorption, and high regional compartmental absorption (total 99.0%) of SE415 in humans were predicted. Finally, the solubility data were correlated/predicted using various cosolvency models with satisfactory results. Thus, the binary cosolvent system can be a promising approach for enhanced oral absorption in controlling DM and associated complications in humans.

12.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946670

ABSTRACT

Solubility of sulfamethazine (SMT) in acetonitrile (MeCN) + methanol (MeOH) cosolvents was determined at nine temperatures between 278.15 and 318.15 K. From the solubility data expressed in molar fraction, the thermodynamic functions of solution, transfer and mixing were calculated using the Gibbs and van 't Hoff equations; on the other hand, the solubility data were modeled according to the Wilson models and NRTL. The solubility of SMT is thermo-dependent and is influenced by the solubility parameter of the cosolvent mixtures. In this case, the maximum solubility was achieved in the cosolvent mixture w0.40 at 318.15 K and the minimum in pure MeOH at 278.15 K. According to the thermodynamic functions, the SMT solution process is endothermic in addition to being favored by the entropic factor, and as for the preferential solvation parameter, SMT tends to be preferentially solvated by MeOH in all cosolvent systems; however, δx3,1<0.01, so the results are not conclusive. Finally, according to mean relative deviations (MRD%), the two models could be very useful tools for calculating the solubility of SMT in cosolvent mixtures and temperatures different from those reported in this research.

13.
Drug Dev Ind Pharm ; 46(6): 910-915, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32339003

ABSTRACT

The solubility profile of codeine phosphate in the carbitol and 2-propanol mixtures at 293.2-313.2 K are determined and correlated with some developed cosolvency models. Moreover, the density values of codeine phosphate saturated solutions are also determined and fitted with the Jouyban-Acree model. The model accuracy is investigated by calculating the mean relative deviations (MRDs%). The thermodynamic parameters of codeine phosphate dissolution in the non-aqueous mixtures of carbitol and 2-propanol are also computed by using van't Hoff and Gibbs equations.


Subject(s)
1-Propanol , 2-Propanol , Codeine/chemistry , Ethylene Glycols/chemistry , Solubility , Solvents , Temperature , Thermodynamics
14.
AAPS PharmSciTech ; 20(5): 204, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31140011

ABSTRACT

Deep eutectic solvents (DESs) have recently been getting a great deal of attention in many fields of science and technology. The objective of this study was to peruse the solubility of indomethacin (IMC) as sparingly soluble drug in some tetrabutylammonium bromide (TBAB)-based DESs (TBAB/ethylene glycol and TBAB/glycerol). The shake flask method has been employed in this study at temperature ranges T = (298.15-313.15) K and atmospheric pressure (pP = 86.6 kPa). The results showed that the solubility of IMC in TBAB/ethylene glycol system was obtained approximately 17,000-fold more than its solubility in water. The solubility data were accurately correlated by the famous local composition activity coefficient models including e-NRTL and UNIQUAC. It was also our aim to evaluate Hansen solubility parameters in IMC solubility prediction. These parameters can help to predict the solvent performance during the manufacturing processes and will be useful in guessing solvent behavior in many other fields of effort. The experimental and the Hansen solubility parameters results are very well matched. In addition, the apparent thermodynamic properties of dissolution and mixing were studied in these solutions based on Van't Hoff and Gibbs equations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Indomethacin/chemistry , Models, Chemical , Quaternary Ammonium Compounds/chemistry , Temperature , Water/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Forecasting , Indomethacin/pharmacokinetics , Quaternary Ammonium Compounds/pharmacokinetics , Solubility , Solvents , Thermodynamics
15.
Int J Pharm ; 564: 197-206, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30980886

ABSTRACT

Naproxen (NAP) is a widely used drug for the treatment of pain and inflammatory conditions. However, there is not the physicochemical information about this drug such as solubility, volumetric and compressibility properties in the presence of deep eutectic solvents (DES) as a new class of green solvents to overcome the low solubility of drugs. In this work, the solubility of NAP is studied in the solutions containing some choline chloride (ChCl) based DES at temperature ranges (298.15-313.15) K. The results indicate that the solubility increases with increasing the concentration of DES and temperature and DES containing malonic acid is the proper co-solvent. The experimental solubility values were correlated by the e-NRTL, Wilson and UNIQUAC models. In addition, the complex interactions between the components in the systems should be elucidated, therefore, the thermodynamic properties including volumetric and compressibility properties have been investigated using density and speed of sound measurements at T = 298.15 K. According to calculated thermodynamic parameters, strong interactions between NAP and DESs are observed which is in agreement with obtained solubility data.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Choline/chemistry , Naproxen/chemistry , Solvents/chemistry , Malonates/chemistry , Models, Chemical , Solubility , Temperature , Thermodynamics
16.
Rev. colomb. quím. (Bogotá) ; 45(1): 34-43, ene.-abr. 2016. ilus, tab
Article in English | LILACS | ID: lil-791352

ABSTRACT

Extended Hildebrand Solubility Approach (EHSA) was applied to evaluate the solubility of sulfadiazine, sulfamerazine, and sulfamethazine in some ethanol + water mixtures at 298.15 K. Reported experimental equilibrium solubilities and some fusion properties of these drugs were used for the calculations. In particular, a good predictive character of EHSA (with mean deviations lower than 3.0%) were found by using regular polynomials in order four correlating the interaction parameter W with the Hildebrand solubility parameter of solvent mixtures without drug. The predictive character of EHSA was the same as that obtained by direct correlation of drug solubilities with the same descriptor of polarity of the cosolvent mixtures.


Se aplicó el Método Extendido de Solubilidad de Hildebrand (MESH) al estudio de la solubilidad de sulfadiazina, sulfamerazina y sulfametazina en mezclas binarias etanol + agua a 298,15 K. Se utilizaron valores reportados de solubilidad en equilibrio y algunas propiedades fisicoquímicas de fusión de estos compuestos. Se obtuvo una adecuada capacidad predictiva del MESH (con desviaciones promedio menores del 3,0%) al utilizar modelos polinómicos regulares de cuarto orden relacionando el parámetro de interacción W con el parámetro de solubilidad de Hildebrand de las mezclas solventes. El carácter predictivo del MESH fue de magnitud semejante al que se obtuvo calculando esta propiedad directamente, donde se utilizó una regresión empírica regular de cuarto orden de la solubilidad experimental logarítmica de los fármacos en función del parámetro de solubilidad de las mezclas disolventes.


Na presente investigação, aplicou-se o Método Estendido de Solubilidade do Hildebrand (MESH) ao estudo da solubilidade da sulfadiazina, sulfamerazina e sulfametazina em misturas binárias etanol + agua a 298,15 K. Obteve-se uma adequada capacidade preditiva (com menor desvio padrão de 3,0%) do MESH ao utilizar modelos polinomiais regulares de quarta ordem relacionando o parâmetro de interação W com o parâmetro de solubilidade do Hildebrand das misturas de solventes. O caráter preditivo do MESH foi semelhante ao obtido pelo cálculo utilizando uma regressão empírica regular da quarta ordem, da solubilidade experimental logarítmica dos fármacos em função do parâmetro de solubilidade das misturas dissolventes.

18.
Iran J Pharm Res ; 14(4): 1041-50, 2015.
Article in English | MEDLINE | ID: mdl-26664370

ABSTRACT

The solubility of naproxen in binary mixtures of polyethylene glycol 200 (PEG 200) + water at the temperature range from 298.0 K to 318.0 K were reported. The combinations of Jouyban-Acree model + van't Hoff and Jouyban-Acree model + partial solubility parameters were used to predict the solubility of naproxen in PEG 200 + water mixtures at different temperatures. Combination of Jouyban-Acree model with van't Hoff equation can be used to predict solubility in PEG 200 + water with only four solubility data in mono-solvents. The obtained solubility calculation errors vary from ~ 17 % up to 35 % depend on the number of required input data. Non-linear enthalpy-entropy compensation was found for naproxen in the investigated solvent system and the Jouyban-Acree model provides reasonably accurate mathematical descriptions of the thermodynamic data of naproxen in the investigated binary solvent systems.

19.
Rev. colomb. quím. (Bogotá) ; 44(2): 34-39, mayo-ago. 2015. ilus, tab
Article in English | LILACS | ID: lil-776337

ABSTRACT

In this communication some reported solubility values of vanillin (component 3) in 2-(2-ethoxyethoxy)ethanol (Carbitol®, component 1) + water (component 2) mixtures at five temperatures from 298.15 to 318.15 K were correlated with the Jouyban-Acree model combined with van't Hoff or Apelblat equations, obtaining models in second degree regarding the mixtures compositions. Mean percentage deviations were near to 6.0%. On the other hand, by means of the inverse Kirkwood-Buff integrals it was demonstrated that vanillin is preferentially solvated by water in water-rich mixtures (with a minimum δx1,3 value in the mixture x1 = 0.05, i.e. -4.29 x 10-2) but preferentially solvated by the cosolvent in mixtures with compositions 0.12 < x1 < 1.00 (with a maximum δx1,3 value equal to 3.61 x 10-2 in the mixture x1 = 0.25). It is conjectural that hydrophobic hydration plays a relevant role in the first case, whereas, in the second case, vanillin would be acting as Lewis acid with Carbitol®.


Nesta pesquisa alguns valores de solubilidade da vanilina (componente 3) em misturas 2-(2-etoxietoxi)etanol (Carbitol®, componente 1) + água (componente 2) em várias temperaturas (298,15-318,15 K) foram correlacionados com o modelo Jouyban-Acree combinado com as equações do van't Hoff ou Apelblat obtendo modelos de ordem dois. Os desvios médios percentuais foram cercanos a 6,0%. Por outro lado, por meio das integrais inversas do Kirkwood-Buff demonstrou-se que a vanilina é preferencialmente solvatada pela água em misturas ricas em agua (com um valor mínimo de δx1,3 igual a -4,29 x 10-2 obtido na mistura de composição x1 = 0,05), mas, preferencialmente, solvatada pelo cosolvente, em misturas com composições 0,12 < x1 < 1,00 (com um valor máximo de δx1,3 igual a 3,61 x 10-2 obtido na mistura de composição x1 = 0,25). É conjecturável que a hidratação hidrofóbica desempenha um papel relevante no primeiro caso, enquanto que, no segundo caso a vanilina está atuando como ácido de Lewis com moléculas do Carbitol®.


En esta comunicación se presenta la correlación de algunos valores de solubilidad de vainillina (componente 3) en mezclas 2-(2-etoxietoxi)etanol (Carbitol®, componente 1) + agua (componente 2) reportados previamente en la literatura a cinco temperaturas desde 298,15 hasta 313,15 K mediante el modelo de Jouyban-Acree combinado con las ecuaciones de van't Hoff y de Apelblat. En el análisis se obtuvieron modelos de segundo orden respecto a la composición de las mezclas disolventes. Las desviaciones porcentuales promedio fueron cercanas al 6,0%. Por otro lado, mediante las integrales inversas de Kirkwood-Buff se demostró que la vainillina es solvatada preferencialmente por el agua en mezclas ricas en agua (con un valor mínimo de δx1,3 igual a -4,29 x 10-2 obtenido en la mezcla de composición x1 = 0,05) pero preferencialmente solvatada por el cosolvente en mezclas con composiciones 0,12 < x1 < 1,00 (con un valor máximo de δx1,3 igual a 3,61 x 10-2 obtenido en la mezcla de composición x1 = 0,25). Se podría conjeturar que la hidratación hidrofóbica juega un papel relevante en el primer caso, mientras que en el segundo caso, la vainillina estaría actuando como ácido de Lewis frente a las moléculas de Carbitol®.

20.
Rev. colomb. quím. (Bogotá) ; 42(3): 387-412, sep.-dic. 2013. ilus, tab
Article in Spanish | LILACS | ID: biblio-960184

ABSTRACT

En este trabajo se propone y se valida una metodología analítica por espectrofotometría UV aplicada al estudio de la solubilidad de algunas sulfonamidas en mezclas cosolventes. Los parámetros evaluados fueron: especificidad, linealidad, precisión y límites de detección y cuantificación, así como la estabilidad de los fármacos bajos las condiciones de análisis de solubilidad. El método propuesto es útil para determinar la solubilidad de estas sulfonamidas en función de la temperatura y la composición cosolvente.


An analytical method by UV-spectrophotometry has been proposed and validated to study the solubility of some sulfonamides in cosolvent mixtures. The parameters evaluated were specificity, linearity, precision, and detection and quantification limits, as well as the drug stability under the solubility analysis conditions. The developed method was useful to determine the solubility of these drugs as a function of temperature and cosolvent concentration.


Neste trabalho propomos é validamos uma metodologia analítica ultravioleta para o estudo da solubilidade de alguns sulfamidas em misturas dos solventes. Os parâmetros avaliados foram: especificidade, linearidade, precisão, exatidão e limites de detecção e quantificação, e a estabilidade dos fármacos nas condições de estúdio. O método proposto é útil para a determinação da solubilidade destes sulfamidas em função da temperatura e da composição do cosolvente.

SELECTION OF CITATIONS
SEARCH DETAIL
...