Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(9): e0011169, 2023 09.
Article in English | MEDLINE | ID: mdl-37672514

ABSTRACT

BACKGROUND: Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. METHODOLOGY/PRINCIPAL FINDINGS: Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico's geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration.


Subject(s)
Aedes , Arboviruses , Humans , Animals , Mexico/epidemiology , Arboviruses/genetics , Central America/epidemiology , North America
2.
Sci Rep ; 12(1): 18014, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289305

ABSTRACT

A major challenge for developing countries during the COVID-19 pandemic is affordable and adequate monitoring of disease progression and population exposure as the primary source relevant epidemiological indicators. Serology testing enables assessing population exposure and to guide vaccination strategies but requires rigorous accuracy validation before population-wide implementation. We adapted a two-step ELISA protocol as a single-step protocol for detection of IgG against the Receptor Binding Domain (RBD) of SARS-CoV-2 spike protein and compared its diagnostic accuracy with a commercial immunoassay anti-nucleoprotein IgG. Both methods yielded adequate and comparable diagnostic accuracy after 3 weeks post-symptom onset and were implemented in a nation-wide population based serological survey during August-November 2020. Anti-RBD National seroprevalence was 23.6%, 1.3% lower, but not significantly, than for anti-N. Double positive seroprevalence was 19.7%. Anti-N single-positive seroprevalence was 3.72% and anti-RBD single-positive seroprevalence was 1.98%. Discrepancies in the positivity to either single marker may be due to different kinetics of each antibody marker as well as the heterogeneity of the sampling time in regards to local epidemic waves. Baseline single positivity prevalence will be useful to assess the serological impact of vaccination and natural infection in further serosurveillance efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Immunoglobulin G , Mexico/epidemiology , Pandemics , Seroepidemiologic Studies , Vaccination
3.
PLoS One ; 15(3): e0227962, 2020.
Article in English | MEDLINE | ID: mdl-32155152

ABSTRACT

OBJECTIVE: Since the 2009 influenza pandemic, Latin American (LA) countries have strengthened their influenza surveillance systems. We analyzed influenza genetic sequence data from the 2017 through 2018 Southern Hemisphere (SH) influenza season from selected LA countries, to map the availability of influenza genetic sequence data from, and to describe, the 2017 through 2018 SH influenza seasons in LA. METHODS: We analyzed influenza A/H1pdm09, A/H3, B/Victoria and B/Yamagata hemagglutinin sequences from clinical samples from 12 National Influenza Centers (NICs) in ten countries (Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico, Paraguay, Peru and Uruguay) with a collection date from epidemiologic week (EW) 18, 2017 through EW 43, 2018. These sequences were generated by the NIC or the WHO Collaborating Center (CC) at the U.S Centers for Disease Control and Prevention, uploaded to the Global Initiative on Sharing All Influenza Data (GISAID) platform, and used for phylogenetic reconstruction. FINDINGS: Influenza hemagglutinin sequences from the participating countries (A/H1pdm09 n = 326, A/H3 n = 636, B n = 433) were highly concordant with the genetic groups of the influenza vaccine-recommended viruses for influenza A/H1pdm09 and influenza B. For influenza A/H3, the concordance was variable. CONCLUSIONS: Considering the constant evolution of influenza viruses, high-quality surveillance data-specifically genetic sequence data, are important to allow public health decision makers to make informed decisions about prevention and control strategies, such as influenza vaccine composition. Countries that conduct influenza genetic sequencing for surveillance in LA should continue to work with the WHO CCs to produce high-quality genetic sequence data and upload those sequences to open-access databases.


Subject(s)
Evolution, Molecular , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Orthomyxoviridae/genetics , Pandemics/prevention & control , Datasets as Topic , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/microbiology , Latin America/epidemiology , Orthomyxoviridae/immunology , Orthomyxoviridae/isolation & purification , Phylogeny
4.
J Virol ; 87(10): 5746-54, 2013 May.
Article in English | MEDLINE | ID: mdl-23487452

ABSTRACT

H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry.


Subject(s)
Conjunctivitis/virology , Influenza A Virus, H7N3 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Viral Tropism , Animals , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets , Humans , Influenza A Virus, H7N3 Subtype/isolation & purification , Male , Mexico , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/transmission , Respiratory System/virology
5.
Mol Vis ; 15: 557-62, 2009.
Article in English | MEDLINE | ID: mdl-19365589

ABSTRACT

PURPOSE: The present work documents an outbreak of epidemic keratoconjunctivitis among ophthalmology residents, its influence in the presentation of the community cases, the use of molecular techniques for its diagnosis, and the implementation of successful control measures for its containment. METHODS: Isolation of the etiologic agent was achieved using cultured African green monkey kidney epithelial cells (VERO). Through molecular tests, such as polymerase chain reaction (PCR) and DNA sequencing, the genotype of the isolated virus was identified. The sequences obtained were aligned with data reported in the NCBI GenBank. A scheme of outbreak control measures was designed to enforce correct sanitary measures in the clinic. The statistical program, Epi info 2002, and openepi were used to determine the attack rate. The Excel Microsoft program was used to elaborate the endemic channel. RESULTS: Nine of the ten samples studied were isolated from the culture and identified by Adenovirus-specifc PCR. Sequencing allowed identification of Ad8 as the agent responsible for the outbreak. The attack rate was 24.39 cases per 100. The epidemic curve allowed identification of a disseminated source in the Institute of Ophthalmology "Conde de Valenciana." It was not possible to calculate the incubation periods among the cases. The endemic channel showed the presence of an epidemic keratoconjunctivitis among the patients that had been cared for at the out-patient services of the institute. CONCLUSIONS: One outbreak of a disseminated source caused by Ad8 was detected in the institute among its medical residents, probably associated with relaxation of the habitual sanitary measures during an epidemic of hemorrhagic conjunctivitis among the patients cared for at the institute. The proposed scheme to control the outbreak allowed for its containment and controlled the epidemic of associated cases.


Subject(s)
Adenoviridae/physiology , Disease Outbreaks , Internship and Residency , Keratoconjunctivitis/epidemiology , Keratoconjunctivitis/virology , Adenoviridae/classification , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adult , Female , Humans , Infection Control , Male , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...