Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Mol Med ; 24: e29, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35912691

ABSTRACT

Immune system aging, a process known as immunosenescence, involves a striking rearrangement affecting all immune cells, resulting in an increased rate of infections and a major incidence of autoimmune diseases and cancer. Nonetheless, differences in how individuals of the same chronological age carry out this immunosenescence establishment and thus the aging rate have been reported. In the context of neuroimmunoendocrine communication and its role in the response to stress situations, growing evidence suggests that social environments profoundly influence all physiological responses, especially those linked to immunity. Accordingly, negative contexts (loneliness in humans/social isolation in rodents) were associated with immune impairments and decreased lifespan. However, positive social environments have been correlated with adequate immunity and increased lifespan. Therefore, the social context in which an individual lives is proposed as a decisive modulator of the immunosenescence process and, consequently, of the rate of aging. In this review, the most important findings regarding how different social environments (negative and positive) modulate immunosenescence and therefore the aging rate, as well as the role of stress responses, hormesis, and resilience in these environments will be explained. Finally, several possible molecular mechanisms underlying the effects of negative and positive environments on immunosenescence will be suggested.


Subject(s)
Immunosenescence , Aging , Humans , Immune System , Immunosenescence/physiology , Longevity , Social Environment
2.
Environ Health ; 19(1): 118, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228714

ABSTRACT

BACKGROUND: The immune system, as a homeostatic system, is an excellent marker of health and has also been proposed as an indicator of the rate of aging. The base of the age-related changes in the immune system, "immunosenescence", is oxidative-inflammatory stress. Studies have shown that long-term exposure to electromagnetic fields (EMFs) produced by technology causes inhibitory effects on the immune response and increases oxidation. The aim of the present study was to investigate the effects of resting on an EMF-insulated system on several immune functions, the oxidative-inflammatory state and subsequently the rate of aging (biological age). METHODS: Several immune functions, in peripheral blood neutrophils and mononuclear cells, of 31 volunteers were analyzed before and after 2 months of using a bed with the patented HOGO system, which insulated participants against EMFs. Several oxidative and inflammatory parameters, in whole blood cells, were also studied. The biological age was calculated using a mathematical formula, which was based on several immune function parameters. A placebo group of 11 people using beds without that property were used as a control. RESULTS: The results showed a significant improvement of immune functions and antioxidant and anti-inflammatory defenses after using the HOGO system for 2 months. In addition, a decrease in oxidants and pro-inflammatory compounds, a lowering of oxidative damage in lipids and in DNA as well as a reduction of calculated biological age was also observed. The placebo group did not show any changes. CONCLUSIONS: In conclusion, 2 months of resting on a bed insulated from EMFs demonstrates improvement in immune function, oxidative-inflammatory state and biological age.


Subject(s)
Aging/immunology , Electromagnetic Fields , Environmental Exposure/prevention & control , Oxidative Stress , Adult , Beds , Female , Humans , Inflammation/immunology , Leukocyte Count , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Oxidation-Reduction , Sleep
3.
Bone Joint Res ; 7(1): 58-68, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29330344

ABSTRACT

OBJECTIVES: Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. METHODS: We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. RESULTS: We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H2O2)-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H2O2 on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. CONCLUSION: These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP.Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58-68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2.

4.
Biogerontology ; 16(6): 709-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26386684

ABSTRACT

The heat-shock protein 70 (HSPA1A or Hsp70) acts as a cellular defense mechanism its expression being induced under stressful conditions. Aging has been related to an impairment in this induction. However, an extended longevity has been associated with its increased expression. According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the age-related alterations of body cells. Since oxidation and inflammation are interlinked processes, and Hsp70 has been shown to confer protection against the harmful effects of oxidative stress as well as modulating the inflammatory status, it could play a role as a regulator of the rate of aging. This role may be different in mitotic and post-mitotic tissues due to the differences in their age-related mechanisms of response, such as apoptosis. Mechanisms affected by Hsp70 that can interfere with the deleterious effects of excessive oxidative stress and chronic low-grade inflammation and that are closely related to the aging process have been detailed. In addition, the potential use of the basal levels (with their differences in post-mitotic and mitotic tissues), the inducible levels, as well as the extracellular levels of Hsp70 as possible biomarkers of the rate of aging and lifespan, have also been discussed.


Subject(s)
Aging/metabolism , HSP70 Heat-Shock Proteins/metabolism , Longevity/physiology , Aging/immunology , Aging/pathology , Animals , Apoptosis , Biomarkers/metabolism , Heat-Shock Response , Humans , Immune System/metabolism , Inflammation Mediators/metabolism , Models, Biological , Molecular Chaperones/metabolism , Oxidants/metabolism , RNA, Long Noncoding
SELECTION OF CITATIONS
SEARCH DETAIL
...