Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109400, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38523777

ABSTRACT

Rho GTPases are molecular switches regulating multiple cellular processes. To investigate the role of RhoA in normal intestinal physiology, we used a conditional mouse model overexpressing a dominant negative RhoA mutant (RhoAT19N) in the intestinal epithelium. Although RhoA inhibition did not cause an overt phenotype, increased levels of nuclear ß-catenin were observed in the small intestinal epithelium of RhoAT19N mice, and the overexpression of multiple Wnt target genes revealed a chronic activation of Wnt signaling. Elevated Wnt signaling in RhoAT19N mice and intestinal organoids did not affect the proliferation of intestinal epithelial cells but significantly interfered with their differentiation. Importantly, 17-month-old RhoAT19N mice showed a significant increase in the number of spontaneous intestinal tumors. Altogether, our results indicate that RhoA regulates the differentiation of intestinal epithelial cells and inhibits tumor initiation, likely through the control of Wnt signaling, a key regulator of proliferation and differentiation in the intestine.

2.
Adv Sci (Weinh) ; 10(25): e2300299, 2023 09.
Article in English | MEDLINE | ID: mdl-37434063

ABSTRACT

Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-ß expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.


Subject(s)
Melanoma , Tumor-Associated Macrophages , Mice , Animals , Cell Line, Tumor , Immunotherapy , CD8-Positive T-Lymphocytes , Tumor Microenvironment
3.
Oncogene ; 41(49): 5279-5288, 2022 12.
Article in English | MEDLINE | ID: mdl-36316444

ABSTRACT

Colorectal cancer causes >900,000 deaths every year and a deeper understanding of the molecular mechanisms underlying this disease will contribute to improve its clinical management and survival. Myosin Vb (MYO5B) regulates intracellular vesicle trafficking, and inactivation of this myosin disrupts the polarization and differentiation of intestinal epithelial cells causing microvillous inclusion disease (MVID), a rare congenital disorder characterized by intractable life-threatening diarrhea. Here, we show that the loss Myosin Vb interfered with the differentiation/polarization of colorectal cancer cells. Although modulation of Myosin Vb expression did not affect the proliferation of colon cancer cells, MYO5B inactivation increased their migration, invasion, and metastatic potential. Moreover, Myo5b inactivation in an intestine-specific knockout mouse model caused a >15-fold increase in the number of azoxymethane-initiated small intestinal tumors. Consistently, reduced expression of Myosin Vb in a cohort of 155 primary colorectal tumors was associated with shorter patient survival. In conclusion, we show here that loss of Myosin Vb reduces polarization/differentiation of colon cancer cells while enhancing their metastatic potential, demonstrating a tumor suppressor function for this myosin. Moreover, reduced expression of Myosin Vb in primary tumors identifies a subset of poor prognosis colorectal cancer patients that could benefit from more aggressive therapeutic regimens.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Myosin Type V , Animals , Mice , Colonic Neoplasms/pathology , Colorectal Neoplasms/pathology , Enterocytes/metabolism , Enterocytes/pathology , Genes, Tumor Suppressor , Mice, Knockout , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Myosin Type V/metabolism , Myosins , Humans
4.
Eur J Pharm Biopharm ; 171: 39-49, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998911

ABSTRACT

Bromodomain and extraterminal domain protein inhibitors (BETi) for cancer treatment did not convince during their first clinical trials. Their epigenetic mechanism of action is still not well understood, even if MYC is generally considered as its main downstream target. In this context, we intended to assess two new nanoformulations of the BETi JQ1 for the treatment of colorectal cancer (CRC). JQ1 was encapsulated at 10 mg/mL in lipid nanocapsules (LNC) or polymeric micelles (PM), both compatible for an intravenous administration. Their effect was compared with free JQ1 on several CRC cell lines in vitro and with daily intraperitoneal cyclodextrin (CD)-loaded JQ1 on the CT26 CRC tumor model in vivo. We showed that LNC preferentially accumulated in tumor, liver, and lymph nodes. LNC-JQ1 and CD-JQ1 similarly delayed tumor growth and increased median survival from 15 to 23 or 20.5 days. JQ1 altered MYC in only two among four CRC cell lines. This MYC-independence found in CT26 was confirmed in vivo by PCR and immunohistochemistry. The main explanation of the JQ1 anticancer effect was an increase in apoptosis. The investigation of its impact on the tumor microenvironment did not show significant effects. Finally, JQ1 association with irinotecan did not synergize in vivo with JQ1 nanoformulations. In conclusion, we demonstrated that the JQ1 anticancer effect was not improved by nanoencapsulation even if their tumor delivery was probably higher. MYC inhibition was not associated to JQ1 efficacy in the case of the CT26 CRC murine model.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Colorectal Neoplasms/drug therapy , Liposomes , Nanoparticles , Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Azepines/administration & dosage , Azepines/therapeutic use , Cell Line, Tumor/drug effects , Colorectal Neoplasms/metabolism , Drug Delivery Systems , Female , Humans , Infusions, Intravenous , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc/metabolism , Triazoles/administration & dosage , Triazoles/therapeutic use
5.
Clin Epigenetics ; 13(1): 88, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33892786

ABSTRACT

BACKGROUND: Cancer initiation and progression are driven by genetic and epigenetic changes. Although genome/exome sequencing has significantly contributed to the characterization of the genetic driver alterations, further investigation is required to systematically identify cancer driver genes regulated by promoter hypermethylation. RESULTS: Using genome-wide analysis of promoter methylation in 45 colorectal cancer cell lines, we found that higher overall methylation levels were associated with microsatellite instability (MSI), faster proliferation and absence of APC mutations. Because epigenetically silenced genes could represent important oncogenic drivers, we used mRNA expression profiling of colorectal cancer cell lines and primary tumors to identify a subset of 382 (3.9%) genes for which promoter methylation was negatively associated with gene expression. Remarkably, a significant enrichment in zinc finger proteins was observed, including the transcriptional repressor ZBTB18. Re-introduction of ZBTB18 in colon cancer cells significantly reduced proliferation in vitro and in a subcutaneous xenograft mouse model. Moreover, immunohistochemical analysis revealed that ZBTB18 is frequently lost or reduced in colorectal tumors, and reduced ZBTB18 expression was found to be associated with lymph node metastasis and shorter survival of patients with locally advanced colorectal cancer. CONCLUSIONS: We identified a set of 382 genes putatively silenced by promoter methylation in colorectal cancer that could significantly contribute to the oncogenic process. Moreover, as a proof of concept, we demonstrate that the epigenetically silenced gene ZBTB18 has tumor suppressor activity and is a novel prognostic marker for patients with locally advanced colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genes, Tumor Suppressor , Genome-Wide Association Study/methods , Repressor Proteins/genetics , Cell Line, Tumor , Humans
6.
Front Oncol ; 10: 38, 2020.
Article in English | MEDLINE | ID: mdl-32083000

ABSTRACT

Whole genome and transcriptome sequencing technologies have led to the identification of many long non-coding RNAs (lncRNAs) and stimulated the research of their role in health and disease. LncRNAs participate in the regulation of critical signaling pathways including cell growth, motility, apoptosis, and differentiation; and their expression has been found dysregulated in human tumors. Thus, lncRNAs have emerged as new players in the initiation, maintenance and progression of tumorigenesis. PVT1 (plasmacytoma variant translocation 1) lncRNA is located on chromosomal 8q24.21, a large locus frequently amplified in human cancers and predictive of increased cancer risk in genome-wide association studies (GWAS). Combined, colorectal and gastric adenocarcinomas are the most frequent tumor malignancies and also the leading cause of cancer-related deaths worldwide. PVT1 expression is elevated in gastrointestinal tumors and correlates with poor patient prognosis. In this review, we discuss the mechanisms of action underlying PVT1 oncogenic role in colorectal and gastric cancer such as MYC upregulation, miRNA production, competitive endogenous RNA (ceRNA) function, protein stabilization, and epigenetic regulation. We also illustrate the potential role of PVT1 as prognostic biomarker and its relationship with resistance to current chemotherapeutic treatments.

7.
Clin Cancer Res ; 26(12): 3044-3057, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32005748

ABSTRACT

PURPOSE: Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia. EXPERIMENTAL DESIGN: We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety. RESULTS: Several FDA/European Medicines Agency (EMA)-approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patient-derived HNSCCs. Finally, in vivo toxicity studies in Fanca-deficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters. CONCLUSIONS: Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Fanconi Anemia/complications , Head and Neck Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Afatinib/administration & dosage , Animals , Apoptosis , Cell Proliferation , Female , Gefitinib/administration & dosage , Head and Neck Neoplasms/etiology , Head and Neck Neoplasms/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Squamous Cell Carcinoma of Head and Neck/etiology , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
J Control Release ; 307: 108-138, 2019 08 10.
Article in English | MEDLINE | ID: mdl-31226355

ABSTRACT

Colorectal cancer (CRC) is among the five most commonly diagnosed cancers worldwide, constituting 6% of all cancers and the third leading cause of cancer death. CRC is the third and second most frequent cancer in men and women worldwide, accounting for 14% and 13% of all cancer incidence rates, respectively. CRC incidence is decreasing in older populations, but it has been significantly rising worldwide in adolescents and adults younger than 50 years old. Significant advances in the screening methods and surgical procedures have been underlying the reduction of the CRC incidence rate in older populations. However, there is an urgent demand for the development of alternative effective therapeutic options to overcome advanced metastatic CRC, while preventing disease recurrence. This review addresses the immune and CRC biology, summarizing the recent advances on the immune and/or therapeutic regimens currently in clinical use. We will focus on the emerging role of nanotechnology in the development of combinational therapies targeting and thereby regulating the function of the major players in CRC progression and immune evasion.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/therapy , Immunotherapy , Nanotechnology , Animals , Colorectal Neoplasms/immunology , Humans
9.
Br J Cancer ; 118(1): 106-116, 2018 01.
Article in English | MEDLINE | ID: mdl-29206819

ABSTRACT

BACKGROUND: Reduced RHOA signalling has been shown to increase the growth/metastatic potential of colorectal tumours. However, the mechanisms of inactivation of RHOA signalling in colon cancer have not been characterised. METHODS: A panel of colorectal cancer cell lines and large cohorts of primary tumours were used to investigate the expression and activity of RHOA, as well as the presence of RHOA mutations/deletions and promoter methylation affecting RHOA. Changes in RHOA expression were assessed by western blotting and qPCR after modulation of microRNAs, SMAD4 and c-MYC. RESULTS: We show here that RHOA point mutations and promoter hypermethylation do not significantly contribute to the large variability of RHOA expression observed among colorectal tumours. However, RHOA copy number loss was observed in 16% of colorectal tumours and this was associated with reduced RHOA expression. Moreover, we show that miR-200a/b/429 downregulates RHOA in colorectal cancer cells. In addition, we found that TGF-ß/SMAD4 upregulates the RHOA promoter. Conversely, RHOA expression is transcriptionally downregulated by canonical Wnt signalling through the Wnt target gene c-MYC that interferes with the binding of SP1 to the RHOA promoter in colon cancer cells. CONCLUSIONS: We demonstrate a complex pattern of inactivation of the tumour suppressor gene RHOA in colon cancer cells through genetic, transcriptional and post-transcriptional mechanisms.


Subject(s)
Colorectal Neoplasms/metabolism , DNA Copy Number Variations , Down-Regulation , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Cell Line, Tumor , Cohort Studies , Colorectal Neoplasms/genetics , DNA Methylation , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , Point Mutation , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Smad4 Protein/metabolism , Transcriptional Activation , Wnt Signaling Pathway
10.
Sci Rep ; 7(1): 13544, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051512

ABSTRACT

Herein, we have used bioinformatics tools to predict five clusters defining ligand-binding sites on the extracellular domain of human CD300b receptor, presumably involved in the formation of both homodimers and heterodimers with other CD300 family members. Site-directed mutagenesis revealed residues glutamic acid 28 and glutamine 29 in cluster 5 to be necessary for the formation of CD300b complexes. Surprisingly, the disruption of cluster 2 and 4 reconstituted the binding capability lost by the mutation of residues glutamic acid 28 to alanine, glutamine 29 to alanine (E28A-Q29G). We identified a missense mutation arginine 33 to glutamine (R33Q) in CD300f by direct sequencing of exon 2 in peripheral blood samples from 50 patients with multiple sclerosis (MS). Levels of expression of CD300f were almost undetectable on monocytes from the patient bearing the R33Q mutation compared with healthy individuals. Whereas R33Q mutation had no effect in the formation of CD300f complexes, the inhibition of protein synthesis with cycloheximide indicated that CD300f R33Q is less stable than native CD300f. Finally, we report that the levels of expression of CD300f on the surface of classical and intermediate monocytes from MS patients are significantly lower when compared to the same cell populations in healthy individuals.


Subject(s)
Multiple Sclerosis/pathology , Receptors, Immunologic/metabolism , Adult , Amino Acid Sequence , Animals , Binding Sites , COS Cells , Case-Control Studies , Chlorocebus aethiops , Cycloheximide/metabolism , Female , Gene Expression , Humans , Ligands , Male , Monocytes/cytology , Monocytes/metabolism , Multiple Sclerosis/genetics , Mutagenesis, Site-Directed , Polymorphism, Single Nucleotide , Protein Structure, Tertiary , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics
11.
Sci Rep ; 7: 41576, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169277

ABSTRACT

EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.


Subject(s)
Colorectal Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Gene Expression , Genotype , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Neoplasm Metastasis , Receptor Protein-Tyrosine Kinases/genetics , Receptor, EphA3 , Signal Transduction
12.
Breast Cancer Res ; 17: 106, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26260680

ABSTRACT

INTRODUCTION: Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. METHODS: We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. RESULTS: Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. CONCLUSIONS: Considering these findings, we conclude that ectodomain shedding is tightly regulated in oncogene-induced senescent cells by integrating transcription of the shedding substrates with limiting ADAM17 activity. The remaining activity of ADAM17 contributes to the non-cell autonomous protumorigenic effects of p95HER2-induced senescent cells. Because ADAM17 is druggable, these results represent an approximation to the pharmacological regulation of the senescence secretome.


Subject(s)
ADAM Proteins/metabolism , Cellular Senescence/physiology , Oncogenes , ADAM Proteins/genetics , ADAM17 Protein , Biological Transport , Cell Line, Tumor , Cell Membrane/metabolism , Enzyme Activation , Female , Gene Expression , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Proteome , Proteomics , Proto-Oncogene Mas
13.
PLoS One ; 10(6): e0129876, 2015.
Article in English | MEDLINE | ID: mdl-26075403

ABSTRACT

A chromosomal region that includes the gene encoding HER2, a receptor tyrosine kinase (RTK), is amplified in 20% of breast cancers. Although these tumors tend to respond to drugs directed against HER2, they frequently become resistant and resume their malignant progression. Gene amplification in double minutes (DMs), which are extrachromosomal entities whose number can be dynamically regulated, has been suggested to facilitate the acquisition of resistance to therapies targeting RTKs. Here we show that ~30% of HER2-positive tumors show amplification in DMs. However, these tumors respond to trastuzumab in a similar fashion than those with amplification of the HER2 gene within chromosomes. Furthermore, in different models of resistance to anti-HER2 therapies, the number of DMs containing HER2 is maintained, even when the acquisition of resistance is concomitant with loss of HER2 protein expression. Thus, both clinical and preclinical data show that, despite expectations, loss of HER2 protein expression due to loss of DMs containing HER2 is not a likely mechanism of resistance to anti-HER2 therapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Gene Amplification , Molecular Targeted Therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm , Female , Gene Dosage , Humans , Lapatinib , Quinazolines/pharmacology , Quinazolines/therapeutic use , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
14.
PLoS One ; 10(4): e0123928, 2015.
Article in English | MEDLINE | ID: mdl-25927603

ABSTRACT

CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation.


Subject(s)
Cyclooxygenase 2/biosynthesis , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Microglia/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Receptors, Immunologic/biosynthesis , Tumor Necrosis Factor-alpha/biosynthesis , Animals , COS Cells , Chlorocebus aethiops , Gene Expression Regulation/drug effects , Mice , Microglia/pathology , NIH 3T3 Cells , Phosphatidylinositol 3-Kinases/metabolism , Poly I-C/pharmacology , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
15.
J Biol Chem ; 287(13): 9682-9693, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22291008

ABSTRACT

Herein we present the cloning and molecular characterization of CD300d, a member of the human CD300 family of immune receptors. CD300d cDNA was cloned from RNA obtained from human peripheral blood mononuclear cells, and RT-PCR revealed the gene to be expressed in cells of myeloid lineage. The cloned cDNA encoded for a type I protein with a single extracellular Ig V-type domain and a predicted molecular mass of 21.5 kDa. The short cytoplasmic tail is lacking in any known signaling motif, but there is a negatively charged residue (glutamic acid) within the transmembrane domain. CD300d forms complexes with the CD300 family members, with the exception of CD300c. Contrary to other activating members of the CD300 family of receptors, surface expression of CD300d in COS-7-transfected cells required the presence of an immunoreceptor tyrosine-based activating motif-bearing adaptor (FcεRγ). Accordingly, we found that CD300d was able to recruit FcεRγ. Unexpectedly, we could not detect CD300d on the surface of cells expressing FcεRγ, suggesting the existence of unknown mechanisms regulating the trafficking of this molecule. The presence of other CD300 molecules also did not modify the intracellular expression of CD300d. In fact, the presence of CD300d decreased the levels of surface expression of CD300f but not CD300c. Our data suggest that the function of CD300d would be related to the regulation of the expression of other CD300 molecules and the composition of CD300 complexes on the cell surface.


Subject(s)
Gene Expression Regulation/physiology , Leukocytes, Mononuclear/metabolism , Multiprotein Complexes/metabolism , Receptors, Immunologic/biosynthesis , Receptors, Immunologic/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Cloning, Molecular , DNA, Complementary/genetics , HeLa Cells , Humans , Leukocytes, Mononuclear/cytology , Molecular Sequence Data , Multiprotein Complexes/genetics , Protein Structure, Tertiary , Protein Transport , Receptors, IgE/genetics , Receptors, IgE/metabolism , Reverse Transcriptase Polymerase Chain Reaction
16.
Brain Pathol ; 22(3): 318-28, 2012 May.
Article in English | MEDLINE | ID: mdl-21951326

ABSTRACT

It is well known that cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). We have analyzed the function of cluster of differentiation (CD)300f immunoreceptor in a model of excitotoxic rat brain damage. First, to explore the presence of endogenous ligand(s) for this receptor we used a human CD300f-Ig soluble protein and confocal microscopy, showing specific staining mainly in CNS white matter and on the surface of oligodendrocytes and certain astrocytes. Next, we demonstrated in a model of in vivo rat brain excitotoxic damage that the overexpression of human CD300f induced a significant reduction in the lesion volume. To validate these results, we cloned the rat ortholog of CD300f protein (rCD300f). The overexpression of rCD300f receptor had a comparable neuroprotective effect after the acute brain injury and a similar CNS staining pattern when stained with the rCD300f-Ig soluble protein. Interestingly, when we analyzed the expression pattern of rCD300f in brain cells by quantitative polymerase chain reaction and immunohistochemistry, we detected the expression of CD300f as expected in microglial cells, but also in oligodendrocytes and neurons. These data suggest that the neuroprotective role of CD300f would be the result of a complex network of cell interactions.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Microglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Receptors, Immunologic/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/pathology , Brain Injuries/chemically induced , Brain Injuries/pathology , Cells, Cultured , Humans , Microglia/pathology , Neurons/pathology , Oligodendroglia/pathology , Rats , Receptors, Immunologic/genetics
17.
J Biol Chem ; 285(53): 41781-94, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-20959446

ABSTRACT

The CD300 family of myeloid immunoglobulin receptors includes activating (CD300b, CD300e) and inhibitory members (CD300a, CD300f), as well as molecules of uncertain function presenting a negative charge within their transmembrane domain (CD300c, CD300d). In this paper, we establish that CD300c is a functional immune receptor able to deliver activating signals upon ligation in RBL-2H3 mast cells. CD300c signaling is partially mediated by a direct association with the immune receptor tyrosine-based activation motif-bearing adaptor FcεRγ. The existence of complementary transmembrane-charged residues in certain CD300 receptors suggested the formation of heterodimers within this family. Indeed, we proved the interaction between CD300b and CD300c in transfected COS-7 cells and demonstrated that it has important functional consequences. Unexpectedly, dimmer formation was dependent on the immunoglobulin domains rather than the charged transmembrane residues. Concordantly, all CD300 members were found to interact with each other, even with themselves, forming both homo- and heterodimers. We found that the combination of CD300 receptors in a complex differentially modulates the signaling outcome, strongly suggesting a new mechanism by which CD300 complexes could regulate the activation of myeloid cells upon interaction with their natural ligands.


Subject(s)
Antigens, Surface/metabolism , Membrane Glycoproteins/metabolism , Myeloid Cells/cytology , Receptors, Immunologic/metabolism , Signal Transduction , Amino Acid Motifs , Animals , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , Dimerization , Flow Cytometry/methods , Immune System , Immunity, Innate , RNA, Small Interfering/metabolism , Tyrosine/chemistry
18.
Mol Immunol ; 45(12): 3446-53, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18479751

ABSTRACT

Natural killer (NK) cell cytotoxicity requires triggering of activation receptors over inhibitory receptors. CD244, a member of CD150 receptor family, positively regulates NK-mediated lyses by activating an intracellular multiproteic signaling network that involves the adaptors X-linked lymphoproliferative gene product SAP and 3BP2. However, the exact mechanisms used by 3BP2 to enhance CD244-mediated cytotoxicity are still not fully understood. Here using the human NK cell line YT-overexpressing 3BP2, we found that the adaptor increases CD244, PI3K, and Vav phosphorylation upon CD244 engagement. The use of enzymatic inhibitors revealed that 3BP2-dependent cytolysis enhancement was PKC-dependent and PI3K-ERK independent. Furthermore, 3BP2 overexpression enhanced PKC delta phosphorylation. SAP knockdown expression inhibited PKC delta activation, indicating that the activating role played by 3BP2 depends upon the presence of SAP. In conclusion, our data show that 3BP2 acts downstream of SAP, increases CD244 phosphorylation and links the receptor with PI3K, Vav, PLC gamma, and PKC downstream events in order to achieve maximum NK killing function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigens, CD/metabolism , Cytotoxicity, Immunologic , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinase C-delta/metabolism , Receptors, Immunologic/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Androstadienes/pharmacology , Animals , Cell Line , Cytotoxicity, Immunologic/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Immunoprecipitation , Mice , Models, Immunological , Phosphatidylinositol 3-Kinases/metabolism , Phospholipase C gamma/metabolism , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins c-vav/metabolism , Signal Transduction/drug effects , Signaling Lymphocytic Activation Molecule Associated Protein , Signaling Lymphocytic Activation Molecule Family , Wortmannin
19.
J Immunol ; 177(5): 2819-30, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16920917

ABSTRACT

In this study, we describe the characterization of human CD300b, a novel member of the CMRF-35/immune receptor expressed by myeloid cell (IREM) multigene family of immune receptors. Immune receptor expressed by myeloid cell-3 cDNA was cloned from a PHA-activated PBMC library and RT-PCR revealed the gene to be expressed preferentially in cells of myeloid origin. The CD300b cDNA open reading frame encodes a 201-aa type I protein composed of a single extracellular Ig V-type domain followed by a transmembrane region containing a positively charged residue (lysine) which is a common feature among receptors that associate with activating adaptor proteins. Indeed, CD300b was able to associate with DNAX-activating protein of 12 kDa (DAP-12) and deliver different activating signals through this ITAM-based adaptor. Unusually for an activating receptor, the 29-aa cytoplasmic tail of CD300b contains a tyrosine-based motif that, upon c-Fyn phosphorylation, became a docking site for the intracellular signaling mediator growth factor receptor-bound protein 2. Moreover, in the absence of DAP-12, CD300b was able to activate NFAT/AP-1-dependent transcriptional activity in RBL-2H3 cells. This activity could be abolished only by mutating both the cytoplasmic tyrosine and the transmembrane lysine. Our data suggest the existence of an unidentified molecule capable of interacting with CD300b through a charged residue of the transmembrane region and allowing receptor signaling independent of DAP-12. Therefore, CD300b defines a nonclassical Ig receptor able to trigger signals by coupling distinct mediators and thus initiating different signaling pathways.


Subject(s)
Antigens, Surface/immunology , Antigens, Surface/metabolism , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Antigens, Surface/chemistry , Antigens, Surface/genetics , Cell Line , Chlorocebus aethiops , Cloning, Molecular , Conserved Sequence , Hexosaminidases/metabolism , Humans , Leukemia, Myeloid/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Mice , Molecular Sequence Data , Organ Specificity , Phosphorylation , Phosphotyrosine/metabolism , Protein Binding , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Sequence Alignment , Transcription, Genetic/genetics
20.
Biochem Biophys Res Commun ; 324(2): 640-7, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15474475

ABSTRACT

The CD85j inhibitory receptor (also termed ILT2 or LIR-1) is a type-I transmembrane protein that belongs to the Ig superfamily and is expressed by different leukocyte lineages. The extracellular region of CD85j binds HLA class I molecules and its cytoplasmic domain displays four immunoreceptor tyrosine-based inhibition motifs (ITIM). Upon tyrosine phosphorylation CD85j recruits the SHP-1 tyrosine phosphatase, involved in negative signaling. In order to identify other molecules to which CD85j might interact with in a phosphotyrosine-dependent manner, a cDNA B-cell library was screened in a three-hybrid system in yeast using the CD85j cytoplasmic tail as bait in the presence of the Src-kinase c-fyn420, 531Y-F, 176R-Q mutant. In this system, the C-terminal Src kinase (Csk) was shown to interact with CD85j. Phosphorylation-dependent recruitment of Csk to the CD85j cytoplasmic tail was confirmed in CD85j-transfected mammalian cells by immunoprecipitation and Western blot analysis. Mutational analyses and phospho-peptide mapping suggested that the SH2 domain of Csk may preferentially bind to ITIM Y562 of CD85j; yet, mutation to phenylalanine of Y533, Y614, and Y644 also significantly reduced Csk recruitment by CD85j. Even though CD85j was detected in both anti-SHP1 and CSK immunoprecipitates, these two molecules did not co-precipitate together with CD85j. Our data support the possibility that Csk regulates the function of CD85j.


Subject(s)
Antigens, CD/physiology , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Receptors, Immunologic/physiology , Amino Acid Motifs , Animals , Antigens, CD/metabolism , B-Lymphocytes/metabolism , Blotting, Western , CSK Tyrosine-Protein Kinase , Cytoplasm/metabolism , DNA/metabolism , DNA Mutational Analysis , DNA, Complementary/metabolism , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins , Jurkat Cells , Leukocyte Immunoglobulin-like Receptor B1 , Peptides/chemistry , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases , Receptors, Immunologic/metabolism , Transfection , Two-Hybrid System Techniques , Tyrosine/chemistry , Vanadates/chemistry , beta-Galactosidase/metabolism , src-Family Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...