Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
JNCI Cancer Spectr ; 7(6)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37862240

ABSTRACT

BACKGROUND: This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung). METHODS: A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standardized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic variants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared single-nucleotide variation (SNV-formerly SNP)-based heritability of rSTATacute in all patients and for each cancer type. RESULTS: Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE = 0.02) and was higher for prostate (17%, SE = 0.07), head and neck (27%, SE = 0.09), and breast (16%, SE = 0.09) cancers. We identified 130 suggestive associated SNVs with rSTATacute (5.0 × 10‒8 < P < 1.0 × 10‒5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size ‒0.17; P = 1.7 × 10‒7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified 'RNA splicing via endonucleolytic cleavage and ligation' (P = 5.1 × 10‒6, P = .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed P = .004 corrected; sun exposed P = .026 corrected). CONCLUSIONS: There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. Future meta-genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.


Subject(s)
Genome-Wide Association Study , Neoplasms , Male , Humans , Neoplasms/genetics , Neoplasms/radiotherapy , Breast , Genetic Predisposition to Disease
2.
Radiother Oncol ; 176: 138-148, 2022 11.
Article in English | MEDLINE | ID: mdl-36191651

ABSTRACT

BACKGROUND AND PURPOSE: We aimed to the genetic components and susceptibility variants associated with acute radiation-induced toxicities (RITs) in patients with head and neck cancer (HNC). MATERIALS AND METHODS: We performed the largest meta-GWAS of seven European cohorts (n = 4,042). Patients were scored weekly during radiotherapy for acute RITs including dysphagia, mucositis, and xerostomia. We analyzed the effect of variants on the average burden (measured as area under curve, AUC) per each RIT, and standardized total average acute toxicity (STATacute) score using a multivariate linear regression. We tested suggestive variants (p < 1.0x10-5) in discovery set (three cohorts; n = 2,640) in a replication set (four cohorts; n = 1,402). We meta-analysed all cohorts to calculate RITs specific SNP-based heritability, and effect of polygenic risk scores (PRSs), and genetic correlations among RITS. RESULTS: From 393 suggestive SNPs identified in discovery set; 37 were nominally significant (preplication < 0.05) in replication set, but none reached genome-wide significance (pcombined < 5 × 10-8). In-silico functional analyses identified "3'-5'-exoribonuclease activity" (FDR = 1.6e-10) for dysphagia, "inositol phosphate-mediated signalling" for mucositis (FDR = 2.20e-09), and "drug catabolic process" for STATacute (FDR = 3.57e-12) as the most enriched pathways by the RIT specific suggestive genes. The SNP-based heritability (±standard error) was 29 ± 0.08 % for dysphagia, 9 ± 0.12 % (mucositis) and 27 ± 0.09 % (STATacute). Positive genetic correlation was rg = 0.65 (p = 0.048) between dysphagia and STATacute. PRSs explained limited variation of dysphagia (3 %), mucositis (2.5 %), and STATacute (0.4 %). CONCLUSION: In HNC patients, acute RITs are modestly heritable, sharing 10 % genetic susceptibility, when PRS explains < 3 % of their variance. We identified numerus suggestive SNPs, which remain to be replicated in larger studies.


Subject(s)
Deglutition Disorders , Head and Neck Neoplasms , Mucositis , Radiation Injuries , Humans , Genome-Wide Association Study , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/complications , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
3.
Int J Radiat Oncol Biol Phys ; 114(3): 494-501, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35840111

ABSTRACT

PURPOSE: Our aim was to test whether updated polygenic risk scores (PRS) for susceptibility to cancer affect risk of radiation therapy toxicity. METHODS AND MATERIALS: Analyses included 9,717 patients with breast (n=3,078), prostate (n=5,748) or lung (n=891) cancer from Radiogenomics and REQUITE Consortia cohorts. Patients underwent potentially curative radiation therapy and were assessed prospectively for toxicity. Germline genotyping involved genome-wide single nucleotide polymorphism (SNP) arrays with nontyped SNPs imputed. PRS for each cancer were generated by summing literature-identified cancer susceptibility risk alleles: 352 breast, 136 prostate, and 24 lung. Weighted PRS were generated using log odds ratio (ORs) for cancer susceptibility. Standardized total average toxicity (STAT) scores at 2 and 5 years (breast, prostate) or 6 to 12 months (lung) quantified toxicity. Primary analysis tested late STAT, secondary analyses investigated acute STAT, and individual endpoints and SNPs using multivariable regression. RESULTS: Increasing PRS did not increase risk of late toxicity in patients with breast (OR, 1.000; 95% confidence interval [CI], 0.997-1.002), prostate (OR, 0.99; 95% CI, 0.98-1.00; weighted PRS OR, 0.93; 95% CI, 0.83-1.03), or lung (OR, 0.93; 95% CI, 0.87-1.00; weighted PRS OR, 0.68; 95% CI, 0.45-1.03) cancer. Similar results were seen for acute toxicity. Secondary analyses identified rs138944387 associated with breast pain (OR, 3.05; 95% CI, 1.86-5.01; P = 1.09 × 10-5) and rs17513613 with breast edema (OR, 0.94; 95% CI, 0.92-0.97; P = 1.08 × 10-5). CONCLUSIONS: Patients with increased polygenic predisposition to breast, prostate, or lung cancer can safely undergo radiation therapy with no anticipated excess toxicity risk. Some individual SNPs increase the likelihood of a specific toxicity endpoint, warranting validation in independent cohorts and functional studies to elucidate biologic mechanisms.


Subject(s)
Biological Products , Breast Neoplasms , Prostatic Neoplasms , Radiation Injuries , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Risk Factors
4.
Cancers (Basel) ; 13(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810047

ABSTRACT

Several studies have identified single-nucleotide polymorphisms (SNPs) associated with adverse effects in non-small-cell lung cancer (NSCLC) patients treated with radiation therapy. Here, using an independent cohort, we aimed to validate the reported associations. We selected 23 SNPs in 17 genes previously associated with radiation-induced oesophagitis for validation in a cohort of 178 Spanish NSCLC patients. Of them, 18 SNPs were finally analysed, following the methods described in the original published studies. Two SNPs replicated their association with radiation-induced oesophagitis (rs7165790 located in the BLM gene: odds ratio (OR) = 0.16, 95% CI = 0.04-0.65, p-value = 0.010; rs4772468 at FGF14: OR = 4.36, 95% CI = 1.15-16.46, p-value = 0.029). The SNP rs2868371 at HSPB1 was also validated but displayed an opposite effect to the formerly described (OR = 3.72; 95% CI = 1.49-9.25; p-value = 0.004). Additionally, we tested a meta-analytic approach including our results and the previous datasets reported in the referenced publications. Twelve SNPs (including the two previously validated) retained their statistically significant association with radiation-induced oesophagitis. This study strengthens the role of inflammation and DNA double-strand break repair pathways in the risk prediction of developing radiation-induced oesophagitis in NSCLC patients. The validated variants are good candidates to be evaluated in risk prediction models for patient stratification based on their radiation susceptibility.

5.
Mol Cell Biochem ; 409(1-2): 45-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26160281

ABSTRACT

Atraumatic subtrochanteric and diaphyseal (atypical) femoral fractures are a rare, but important adverse event in patients treated with potent anti-resortive agents. The mechanisms involved are unknown and particularly the association with genetic variants has not been explored. The aim of the study was to identify rare genetic variants that could be associated with the occurrence of these fractures. We performed a genome-wide analysis of up to 300,000 variants, mainly distributed in gene coding regions, in 13 patients with atypical femoral fractures and 268 control women, either healthy or with osteoporosis. Twenty one loci were more frequent in the fracture group, with a nominal p value between 1 × 10(-6) and 2.5 × 10(-3). Most patients accumulated two or more allelic variants, and consequently the number of risk variants was markedly different between patients and controls (p = 2.6 × 10(-22)). The results of this pilot study suggest that these fractures are polygenic and are associated with the accumulation of changes in the coding regions of several genes.


Subject(s)
Hip Fractures/genetics , Osteoporosis/genetics , Polymorphism, Single Nucleotide/genetics , Acyltransferases/genetics , Aged , Aged, 80 and over , Female , Gene Frequency/genetics , Genetic Heterogeneity , Genome-Wide Association Study , Hedgehog Proteins/genetics , Hip Fractures/pathology , Humans , Middle Aged , Pilot Projects , Receptors, CXCR/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...