Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616133

ABSTRACT

BACKGROUND AND PURPOSE: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.

2.
Front Microbiol ; 15: 1358258, 2024.
Article in English | MEDLINE | ID: mdl-38559344

ABSTRACT

Introduction: SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods: Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results: In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion: We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.

4.
Proc Natl Acad Sci U S A ; 121(10): e2317851121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416684

ABSTRACT

Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Haplotypes , Viral Nonstructural Proteins , RNA, Viral
5.
J Virol ; 97(12): e0151123, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38092661

ABSTRACT

Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.


Subject(s)
COVID-19 , RNA Viruses , SARS-CoV-2 , Humans , COVID-19/virology , Genome, Viral , Quasispecies , RNA Viruses/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology
7.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569568

ABSTRACT

MicroRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) are potential diagnostic and prognostic biomarkers. However, discrepancies in miRNA patterns and their validation are still frequent due to differences in sample origin, EV isolation, and miRNA sequencing methods. The aim of the present study is to find a reliable EV isolation method for miRNA sequencing, adequate for clinical application. To this aim, two comparative studies were performed in parallel with the same human plasma sample: (i) isolation and characterization of EVs obtained using three procedures: size exclusion chromatography (SEC), iodixanol gradient (GRAD), and its combination (SEC+GRAD) and (ii) evaluation of the yield of miRNA sequences obtained using NextSeq 500 (Illumina) and three miRNA library preparation protocols: NEBNext, NEXTFlex, and SMARTer smRNA-seq. The conclusion of comparison (i) is that recovery of the largest amount of EVs and reproducibility were attained with SEC, but GRAD and SEC+GRAD yielded purer EV preparations. The conclusion of (ii) is that the NEBNext library showed the highest reproducibility in the number of miRNAs recovered and the highest diversity of miRNAs. These results render the combination of GRAD EV isolation and NEBNext library preparation for miRNA retrieval as adequate for clinical applications using plasma samples.


Subject(s)
Extracellular Vesicles , MicroRNAs , Humans , Reproducibility of Results , MicroRNAs/genetics , Extracellular Vesicles/genetics , Chromatography, Gel , Plasma
8.
Cell ; 186(16): 3460-3475.e23, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37478862

ABSTRACT

All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Humans , Gene Expression , HEK293 Cells , HeLa Cells , Mutation , Signal Transduction , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
9.
Antimicrob Agents Chemother ; 67(7): e0039423, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37367486

ABSTRACT

The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Hepacivirus/genetics , Mutagens/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Genotype , Ribavirin/therapeutic use , Treatment Outcome , Drug Therapy, Combination
10.
Antimicrob Agents Chemother ; 67(1): e0131522, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36602354

ABSTRACT

We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.


Subject(s)
COVID-19 , Ribavirin , Animals , Chlorocebus aethiops , Ribavirin/pharmacology , Ribavirin/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/genetics , Vero Cells , Mutation , Mutagens/pharmacology
11.
Front Microbiol ; 13: 960676, 2022.
Article in English | MEDLINE | ID: mdl-35992670

ABSTRACT

We report a quantification of the decrease of effectiveness of antiviral agents directed to hepatitis C virus, when the agents are added during an ongoing infection in cell culture vs. when they are added at the beginning of the infection. Major determinants of the decrease of inhibitory activity are the time post-infection of inhibitor administration and viral replicative fitness. The efficacy decrease has been documented with antiviral assays involving the combination of the direct-acting antiviral agents, daclatasvir and sofosbuvir, and with the combination of the lethal mutagens, favipiravir and ribavirin. The results suggest that strict antiviral effectiveness assays in preclinical trials may involve the use of high fitness viral populations and the delayed administration of the agents, relative to infection onset.

12.
Pathogens ; 11(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745516

ABSTRACT

Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.

13.
Microbiol Spectr ; 10(2): e0022122, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35348367

ABSTRACT

Mutant spectra of RNA viruses are important to understand viral pathogenesis and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultradeep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of 30 nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low-frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype, and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three-dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19. IMPORTANCE The study shows that mutant spectra of SARS-CoV-2 from diagnostic samples differ in point mutation abundance and complexity and that significantly larger values were observed in virus from patients who developed mild COVID-19 symptoms. Mutant spectrum complexity is not a uniform trait among isolates. The nature and location of low-frequency amino acid substitutions present in mutant spectra anticipate great potential for phenotypic diversification of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Nasopharynx , Pandemics , Point Mutation , SARS-CoV-2/genetics
14.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35259127

ABSTRACT

Replication of SARS-CoV-2 in the human population is defined by distributions of mutants that are present at different frequencies within the infected host and can be detected by ultra-deep sequencing techniques. In this study, we examined the SARS-CoV-2 mutant spectra of amplicons from the spike-coding (S-coding) region of 5 nasopharyngeal isolates derived from patients with vaccine breakthrough. Interestingly, all patients became infected with the Alpha variant, but amino acid substitutions that correspond to the Delta Plus, Iota, and Omicron variants were present in the mutant spectra of the resident virus. Deep sequencing analysis of SARS-CoV-2 from patients with vaccine breakthrough revealed a rich reservoir of mutant types and may also identify tolerated substitutions that can be represented in epidemiologically dominant variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Mutation , SARS-CoV-2/genetics
15.
Microbiol Spectr ; 9(3): e0145921, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34756074

ABSTRACT

RNA viruses replicate as complex mutant spectra termed viral quasispecies. The frequency of each individual genome in a mutant spectrum depends on its rate of generation and its relative fitness in the replicating population ensemble. The advent of deep sequencing methodologies allows for the first-time quantification of haplotype abundances within mutant spectra. There is no information on the haplotype profile of the resident genomes and how the landscape evolves when a virus replicates in a controlled cell culture environment. Here, we report the construction of intramutant spectrum haplotype landscapes of three amplicons of the NS5A-NS5B coding region of hepatitis C virus (HCV). Two-dimensional (2D) neural networks were constructed for 44 related HCV populations derived from a common clonal ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells in the absence of external selective pressures. The haplotype profiles consisted of an extended dense basal platform, from which a lower number of protruding higher peaks emerged. As HCV increased its adaptation to the cells, the number of haplotype peaks within each mutant spectrum expanded, and their distribution shifted in the 2D network. The results show that extensive HCV replication in a monotonous cell culture environment does not limit HCV exploration of sequence space through haplotype peak movements. The landscapes reflect dynamic variation in the intramutant spectrum haplotype profile and may serve as a reference to interpret the modifications produced by external selective pressures or to compare with the landscapes of mutant spectra in complex in vivo environments. IMPORTANCE The study provides for the first time the haplotype profile and its variation in the course of virus adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks. The results suggest an inferred intramutant spectrum fitness landscape structure that offers potential benefits for virus resilience to mutational inputs.


Subject(s)
Adaptation, Physiological/genetics , Genome, Viral/genetics , Haplotypes/genetics , Hepacivirus/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Substitution/genetics , Cell Line, Tumor , Chromosome Mapping , Evolution, Molecular , Hepacivirus/growth & development , Hepatitis C/virology , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Quasispecies/genetics , RNA, Viral/genetics , Virus Replication
16.
Access Microbiol ; 3(9): 000259, 2021.
Article in English | MEDLINE | ID: mdl-34712904

ABSTRACT

COVID-19 severity and progression are determined by several host and virological factors that may influence the final outcome of SARS-CoV-2-infected patients. The objective of this work was to determine a possible association between viral load, obtained from nasopharyngeal swabs, and the severity of the infection in a cohort of 448 SARS-CoV-2-infected patients from a hospital in Madrid during the first outbreak of the pandemic in Spain. To perform this, we clinically classified patients as mild, moderate and severe COVID-19 according to a number of clinical parameters such as hospitalization requirement, need of oxygen therapy, admission to intensive care units and/or death. Also, Ct values were determined using SARS-CoV-2-specific oligonucleotides directed to ORF1ab. Here we report a statistically significant association between viral load and disease severity, a high viral load being associated with worse clinical prognosis, independently of several previously identified risk factors such as age, sex, hypertension, cardiovascular disease, diabetes, obesity and lung disease (asthma and chronic obstructive pulmonary disease). The data presented here reinforce viral load as a potential biomarker for predicting disease severity in SARS-CoV-2-infected patients. It is also an important parameter in viral evolution since it relates to the numbers and types of variant genomes present in a viral population, a potential determinant of disease progression.

17.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34562363

ABSTRACT

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Subject(s)
Stress, Physiological , Amino Acids/chemistry , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Line , Female , Humans , Ions , Mice , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding/drug effects , Protein Stability/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Structure-Activity Relationship , Substrate Specificity/drug effects , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitination/drug effects , Zinc/pharmacology
18.
Viruses ; 13(4)2021 04 03.
Article in English | MEDLINE | ID: mdl-33916702

ABSTRACT

Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium-revealed by the changing composition of the mutant spectrum-may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.


Subject(s)
Hepacivirus/genetics , Hepacivirus/physiology , Hepatitis C/virology , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Drug Resistance, Viral/drug effects , Hepacivirus/drug effects , Humans , Mutation , RNA, Viral , Ribavirin/pharmacology , Sequence Analysis , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
19.
Dev Cell ; 56(5): 588-601.e9, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33609460

ABSTRACT

Cell-cell fusion is a frequent and essential event during development, and its dysregulation causes diseases ranging from infertility to muscle weakness. Fusing cells need to repeatedly remodel their plasma membrane through orchestrated formation and disassembly of actin filaments, but how the dynamic reorganization of the cortical actin cytoskeleton is controlled is still poorly understood. Here, we identified a ubiquitin-dependent toggle switch that establishes reversible actin bundling during mammalian cell fusion. We found that EPS8-IRSp53 complexes stabilize cortical actin bundles at sites of cell contact to promote close membrane alignment. EPS8 monoubiquitylation by CUL3KCTD10 displaces EPS8-IRSp53 from membranes and counteracts actin bundling, a dual activity that restricts actin bundling to allow paired cells to progress with fusion. We conclude that cytoskeletal rearrangements during development are precisely controlled by ubiquitylation, raising the possibility of modulating the efficiency of cell-cell fusion for therapeutic benefit.


Subject(s)
Actin Cytoskeleton/physiology , Adaptor Proteins, Signal Transducing/metabolism , Cell Fusion , Cullin Proteins/metabolism , Myoblasts/physiology , Nerve Tissue Proteins/metabolism , Ubiquitin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Communication , Cell Membrane/metabolism , Cullin Proteins/genetics , HEK293 Cells , Humans , Mice , Myoblasts/cytology , Nerve Tissue Proteins/genetics
20.
J Clin Microbiol ; 58(12)2020 11 18.
Article in English | MEDLINE | ID: mdl-32999010

ABSTRACT

Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Amino Acid Substitution , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Genotype , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Humans , Treatment Failure , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...