Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol Biochem ; 132: 566-570, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30326435

ABSTRACT

The morphology and micromechanical properties of the mineral crystals embedded in the pecan nutshell (Carya illinoinensis) were characterized. Qualitative and quantitative morphological analyses carried out revealed that the crystals were comprised of calcium oxalate (CaOx) and have a wide range of sizes, with prismatic shapes, distributed heterogeneously in the sclerenchyma tissue. From indentation tests, it was found that CaOx crystals are stiffer structures compared to stone cells (sclerenchyma tissue), showing hardness and elastic modulus values of 0.53 ±â€¯0.19 GPa and 9.4 ±â€¯1.80 GPa, respectively. Additionally, the values of fracture toughness (0.08 ±â€¯0.02 MPa m0.5) and the brittleness index (9336 m-0.5) revealed that these types of structures are extremely brittle. The results obtained suggest that the main function of the CaOx crystals is to provide structural support to tissue. The presented methodology demonstrates the potential of the instrumented indentation technique (IIT) for in situ micromechanical characterization of mineral crystals located in plant tissues.


Subject(s)
Calcium Oxalate/chemistry , Carya/chemistry , Biomechanical Phenomena , Carya/ultrastructure , Crystallization , Minerals/chemistry , Optical Imaging
2.
Nanotechnology ; 24(4): 045201, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23298951

ABSTRACT

We report the observation of photoconduction and a strong nonlinear optical absorptive response exhibited by multi-wall carbon nanotubes. An aerosol pyrolysis method was employed for the preparation of the samples. Measurements of the optical transmittance with 7 ns pulses at 1064 nm wavelength allowed us to identify a two-photon absorption effect as the main mechanism of third-order nonlinearity. Photoconductive experiments at 445 nm wavelength seem to confirm the possibility for generating non-resonant multi-photonic absorption processes in the multi-wall carbon nanotubes. By the optical control of the conductivity in the nanotubes, we implement an optoelectronic amplitude modulator device with potential applications for sharp selective functionalities.


Subject(s)
Electrodes , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/radiation effects , Photometry/instrumentation , Refractometry/methods , Equipment Design , Equipment Failure Analysis , Light , Materials Testing , Photometry/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL