Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
Sci Adv ; 8(11): eabm7322, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35294231

ABSTRACT

Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a ß-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Atherosclerosis , Animals , Aortic Aneurysm, Abdominal/etiology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Disease Models, Animal , Galectin 1/genetics , Galectin 1/metabolism , Galectin 1/pharmacology , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Proteomics , Vascular Remodeling
3.
EBioMedicine ; 76: 103874, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35152150

ABSTRACT

BACKGROUND: Imaging of subclinical atherosclerosis improves cardiovascular risk prediction on top of traditional risk factors. However, cardiovascular imaging is not universally available. This work aims to identify circulating proteins that could predict subclinical atherosclerosis. METHODS: Hypothesis-free proteomics was used to analyze plasma from 444 subjects from PESA cohort study (222 with extensive atherosclerosis on imaging, and 222 matched controls) at two timepoints (three years apart) for discovery, and from 350 subjects from AWHS cohort study (175 subjects with extensive atherosclerosis on imaging and 175 matched controls) for external validation. A selected three-protein panel was further validated by immunoturbidimetry in the AWHS population and in 2999 subjects from ILERVAS cohort study. FINDINGS: PIGR, IGHA2, APOA, HPT and HEP2 were associated with subclinical atherosclerosis independently from traditional risk factors at both timepoints in the discovery and validation cohorts. Multivariate analysis rendered a potential three-protein biomarker panel, including IGHA2, APOA and HPT. Immunoturbidimetry confirmed the independent associations of these three proteins with subclinical atherosclerosis in AWHS and ILERVAS. A machine-learning model with these three proteins was able to predict subclinical atherosclerosis in ILERVAS (AUC [95%CI]:0.73 [0.70-0.74], p < 1 × 10-99), and also in the subpopulation of individuals with low cardiovascular risk according to FHS 10-year score (0.71 [0.69-0.73], p < 1 × 10-69). INTERPRETATION: Plasma levels of IGHA2, APOA and HPT are associated with subclinical atherosclerosis independently of traditional risk factors and offers potential to predict this disease. The panel could improve primary prevention strategies in areas where imaging is not available. FUNDING: This study was supported by competitive grants from the Spanish Ministry of Science, Innovation and Universities (BIO2015-67580-P, PGC2018-097019-B-I00, PID2019-106814RB-I00 and SAF2016-80843-R), through the Carlos III Institute of Health-Fondo de Investigacion Sanitaria grant PRB3 (IPT17/0019 - ISCIII-SGEFI / ERDF, ProteoRed), CIBERCV and CIBERDEM, the Fundacio MaratoTV3 (grant 122/C/2015) and "la Caixa" Banking Foundation (project HR17-00247). The PESA study is co-funded equally by the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, and Banco Santander, Madrid, Spain. The ILERVAS study was funded by the Diputacio de Lleida. The study also receives funding from the Instituto de Salud Carlos III (PI15/02019; PI18/00610; RD16/0009) and the FEDER funds. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovacion y Universidades (MCNU) and the Pro CNIC Foundation.


Subject(s)
Atherosclerosis , Proteomics , Atherosclerosis/diagnosis , Biomarkers , Cohort Studies , Humans , Risk Factors
4.
Circulation ; 144(25): 2021-2034, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34806902

ABSTRACT

BACKGROUND: Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. METHODS: Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5ΔCat). Proteomics was applied to study ECM remodeling in left ventricular samples from patients with HF, with a particular focus on the effects of common medications used for the treatment of HF. RESULTS: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5ΔCat mice, angiotensin II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin ß1, filamin A, and connexin 43. Echocardiographic assessment of Adamts5ΔCat mice revealed a reduced ejection fraction and an impaired global longitudinal strain on angiotensin II infusion. Cardiac hypertrophy and collagen deposition were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from patients with ischemic HF (n=65), the use of ß-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that ß1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, patients with HF treated with ß-blockers had a distinct cardiac ECM profile. CONCLUSIONS: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that ß-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.


Subject(s)
ADAMTS5 Protein/metabolism , Extracellular Matrix/metabolism , Heart Failure/metabolism , Proteoglycans/metabolism , Animals , Heart Failure/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Proteomics
5.
Free Radic Biol Med ; 174: 171-181, 2021 10.
Article in English | MEDLINE | ID: mdl-34364980

ABSTRACT

High Density Lipoprotein (HDL) plays a protective role in abdominal aortic aneurysm (AAA); however, recent findings suggest that oxidative modifications could lead to dysfunctional HDL in AAA. This study aimed at testing the effect of oxidized HDL on aortic lesions and humoral immune responses in a mouse model of AAA induced by elastase, and evaluating whether antibodies against modified HDL can be found in AAA patients. HDL particles were oxidized with malondialdehyde (HDL-MDA) and the changes were studied by biochemical and proteomics approaches. Experimental AAA was induced in mice by elastase perfusion and then mice were treated with HDL-MDA, HDL or vehicle for 14 days. Aortic lesions were studied by histomorphometric analysis. Levels of anti-HDL-MDA IgG antibodies were measured by an in-house immunoassay in the mouse model, in human tissue-supernatants and in plasma samples from the VIVA cohort. HDL oxidation with MDA was confirmed by enhanced susceptibility to diene formation. Proteomics demonstrated the presence of MDA adducts on Lysine residues of HDL proteins, mainly ApoA-I. MDA-modification of HDL abrogated the protective effect of HDL on cultured endothelial cells as well as on AAA dilation in mice. Exposure to HDL-MDA elicited an anti-HDL-MDA IgG response in mice. Anti-HDL-MDA were also detected in tissue-conditioned media from AAA patients, mainly in intraluminal thrombus. Higher plasma levels of anti-HDL-MDA IgG antibodies were found in AAA patients compared to controls. Anti-HDL-MDA levels were associated with smoking and were independent predictors of overall mortality in AAA patients. Overall, MDA-oxidized HDL trigger a specific humoral immune response in mice. Besides, antibodies against HDL-MDA can be detected in tissue and plasma of AAA patients, suggesting its potential use as surrogate stable biomarkers of oxidative stress in AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Animals , Disease Models, Animal , Endothelial Cells , Humans , Immunoglobulin G , Lipoproteins, HDL , Malondialdehyde , Mice , Mice, Inbred C57BL
6.
Nature ; 589(7841): 287-292, 2021 01.
Article in English | MEDLINE | ID: mdl-33268892

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.


Subject(s)
1-Pyrroline-5-Carboxylate Dehydrogenase/immunology , Atherosclerosis/immunology , Atherosclerosis/prevention & control , Autoantibodies/immunology , Autoantigens/immunology , 1-Pyrroline-5-Carboxylate Dehydrogenase/blood , Animals , Atherosclerosis/blood , Atherosclerosis/diagnosis , Autoantibodies/blood , Autoantibodies/genetics , Autoantigens/blood , Autoimmunity , B-Lymphocytes/immunology , Biomarkers/blood , Cholesterol/blood , Diet, High-Fat , Disease Models, Animal , Disease Progression , Humans , Lipoproteins, LDL/blood , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/prevention & control , Proteomics , Receptors, LDL/deficiency , Receptors, LDL/genetics , Single-Cell Analysis
7.
J Am Coll Cardiol ; 75(16): 1926-1941, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32327104

ABSTRACT

BACKGROUND: The mechanisms underlying early atherosclerotic plaque formation are not completely understood. Moreover, plasma biomarkers of subclinical atherosclerosis are lacking. OBJECTIVES: The purpose of this study was to analyze the temporal and topologically resolved protein changes taking place in human aortas with early atherosclerosis to find new potential diagnostic and/or therapeutic targets. METHODS: The protein composition of healthy aortas (media layer) or with early atheroma (fatty streak and fibrolipidic, media and intima layers) was analyzed by deep quantitative multiplexed proteomics. Further analysis was performed by Western blot, immunohistochemistry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Plasma levels of complement C5 were analyzed in relation to the presence of generalized (>2 plaques) or incipient (0 to 2 plaques) subclinical atherosclerosis in 2 independent clinical cohorts (PESA [Progression of Early Subclinical Atherosclerosis] [n = 360] and NEFRONA [National Observatory of Atherosclerosis in Nephrology] [n = 394]). RESULTS: Proteins involved in lipid transport, complement system, immunoglobulin superfamily, and hemostasis are increased in early plaques. Components from the complement activation pathway were predominantly increased in the intima of fibrolipidic plaques. Among them, increased C5 protein levels were further confirmed by Western blot, enzyme-linked immunosorbent assay and immunohistochemistry, and associated with in situ complement activation. Plasma C5 was significantly increased in individuals with generalized subclinical atherosclerosis in both PESA and NEFRONA cohorts, independently of risk factors. Moreover, in the PESA study, C5 plasma levels positively correlated with global plaque volume and coronary calcification. CONCLUSIONS: Activation of the complement system is a major alteration in early atherosclerotic plaques and is reflected by increased C5 plasma levels, which have promising value as a novel circulating biomarker of subclinical atherosclerosis.


Subject(s)
Asymptomatic Diseases , Atherosclerosis , Complement C5/analysis , Plaque, Atherosclerotic/metabolism , Atherosclerosis/blood , Atherosclerosis/diagnosis , Biomarkers/analysis , Complement Activation , Female , Humans , Immunohistochemistry , Male , Plaque, Atherosclerotic/pathology , Proteomics/methods
8.
Mol Immunol ; 114: 207-215, 2019 10.
Article in English | MEDLINE | ID: mdl-31377677

ABSTRACT

Cardiovascular diseases (CVD) remain the major cause of morbidity and mortality in Europe. The clinical complications associated to arterial wall rupture involve intimal cap rupture in complicated atherosclerotic plaques and medial rupture in abdominal aortic aneurysm (AAA). The mechanisms underlying pathological vascular remodeling include lipid accumulation, cell proliferation, redox imbalance, proteolysis, leukocyte infiltration, cell death, and eventually, thrombosis. The complement system could participate in vascular remodeling by several mechanisms, from an initial protective response that aims in the clearing of cell debris to a potential deleterious role participating in leukocyte chemotaxis and cell activation and bridging innate and adaptive immunity. We have reviewed the presence and distribution of complement components, as well as the triggers of complement activation in atherosclerotic plaques and AAA, to later assess the functional consequences of complement modulation in experimental models of pathological vascular remodeling and the potential role of complement components as potential circulating biomarkers of CVD. On the whole, complement system is a key mechanism involved in vascular remodelling, which could be useful in the diagnostic/prognostic setting, as well as a potential therapeutic target, of CVD.


Subject(s)
Complement System Proteins/immunology , Vascular Remodeling/immunology , Animals , Biomarkers/blood , Complement Activation/immunology , Humans , Plaque, Atherosclerotic/immunology
9.
Clín. investig. arterioscler. (Ed. impr.) ; 31(4): 166-177, jul.-ago. 2019. ilus
Article in Spanish | IBECS | ID: ibc-182711

ABSTRACT

El aneurisma de aorta abdominal (AAA) es una patología vascular con una elevada tasa de morbimortalidad y una prevalencia que, en varones de más de 65 años, puede alcanzar el 8%. En esta enfermedad, habitualmente asintomática, se produce una dilatación progresiva de la pared vascular que puede llevar a su rotura, un fenómeno mortal en más de un 80% de los casos. El tratamiento de los pacientes con aneurismas asintomáticos se limita al seguimiento periódico con pruebas de imagen, el control de los factores de riesgo cardiovascular y un tratamiento con terapia antiagregante y estatinas, si bien actualmente no existe ningún tratamiento farmacológico efectivo capaz de limitar su progresión o evitar su rotura. En la actualidad el diámetro aórtico es el único marcador de riesgo de rotura y determina la necesidad de reparación quirúrgica cuando alcanza valores superiores a 5,5 cm. En esta revisión se tratan los principales aspectos relacionados con la epidemiología, los factores de riesgo, el diagnóstico y el manejo terapéutico del AAA, se exponen las dificultades para disponer de buenos biomarcadores de esta enfermedad y se describen las estrategias para la identificación de nuevas dianas terapéuticas y biomarcadores en el AAA


Abdominal aortic aneurysm (AAA) is a vascular pathology with a high rate of morbidity and mortality and a prevalence that, in men over 65 years, can reach around 8%. In this disease, usually asymptomatic, there is a progressive dilatation of the vascular wall that can lead to its rupture, a fatal phenomenon in more than 80% of cases. The treatment of patients with asymptomatic aneurysms is limited to periodic monitoring with imaging tests, control of cardiovascular risk factors and treatment with statins and antiplatelet therapy. There is no effective pharmacological treatment capable of limiting AAA progression or avoiding their rupture. At present, the aortic diameter is the only marker of risk of rupture and determines the need for surgical repair when it reaches values greater than 5.5 cm. This review addresses the main aspects related to epidemiology, risk factors, diagnosis and clinical management of AAA, exposes the difficulties to have good biomarkers of this pathology and describes the strategies for the identification of new therapeutic targets and biomarkers in AAA


Subject(s)
Humans , Male , Female , Middle Aged , Aortic Aneurysm, Abdominal/epidemiology , Aortic Aneurysm, Abdominal/physiopathology , Biomarkers/analysis , Drug Delivery Systems/methods , Aortic Aneurysm, Abdominal/therapy , Hypertension/complications , Tobacco Use/epidemiology , Peripheral Arterial Disease/physiopathology , Angiotensin-Converting Enzyme Inhibitors/administration & dosage
10.
EBioMedicine ; 43: 43-53, 2019 May.
Article in English | MEDLINE | ID: mdl-30982767

ABSTRACT

BACKGROUND: High-density lipoproteins (HDL) are a complex mixture of lipids and proteins with vasculoprotective properties. However, HDL components could suffer post-translational modifications (PTMs) under pathological conditions, leading to dysfunctional HDL. We studied whether HDL are modified in abdominal aortic aneurysm (AAA) and the effect on HDL functionality. METHODS: HDL were isolated by ultracentrifugation from AAA tissue (HDL-T) and from plasma of healthy volunteers and then incubated with AAA tissue-conditioned medium (HDL-AAA CM). PTMs from these particles were characterized using Comet-PTM. The ability of HDL-AAA CM for promoting cholesterol efflux was determined ex vivo and in vivo by using J774A.1 [3H]cholesterol-labeled mouse macrophages and after injecting [3H]cholesterol-labeled mouse macrophages and HDL into the peritoneal cavity of wild-type C57BL/6 mice, respectively. Trp50 and Trp108 oxidized forms of APOA1 in HDL incubated with conditioned-medium of activated neutrophils and in plasma of AAA patients and controls were measured by targeted parallel reaction monitoring. FINDINGS: Oxidation was the most prevalent PTM in apolipoproteins, particularly in APOA1. Trp50 and Trp108 in APOA1 were the residues most clearly affected by oxidation in HDL-T and in HDL-AAA CM, when compared to their controls. In addition, cholesterol efflux was decreased in macrophages incubated with HDL-AAA CM in vitro and a decreased macrophage-to-serum reverse cholesterol transport was also observed in mice injected with HDL-AAA CM. Finally, both oxidized Trp50 and Trp108 forms of APOA1 were increased in HDL incubated with conditioned-medium of activated neutrophils and in plasma of AAA patients in relation to controls. INTERPRETATION: Oxidative modifications of HDL present in AAA tissue and plasma were closely associated with the loss of vasculoprotective properties of HDL in AAA. FUND: MINECO, ISCiii-FEDER, CIBERDEM, CIBERCV and LA CAIXA.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Oxidation-Reduction , Aged , Aortic Aneurysm, Abdominal/etiology , Aortic Aneurysm, Abdominal/pathology , Biomarkers , Case-Control Studies , Comorbidity , Female , Humans , Immunohistochemistry , Lipid Metabolism , Lipoproteins, HDL/blood , Male , Middle Aged , Proteome , Proteomics/methods , Risk Factors
11.
Clin Investig Arterioscler ; 31(4): 166-177, 2019.
Article in English, Spanish | MEDLINE | ID: mdl-30528271

ABSTRACT

Abdominal aortic aneurysm (AAA) is a vascular pathology with a high rate of morbidity and mortality and a prevalence that, in men over 65 years, can reach around 8%. In this disease, usually asymptomatic, there is a progressive dilatation of the vascular wall that can lead to its rupture, a fatal phenomenon in more than 80% of cases. The treatment of patients with asymptomatic aneurysms is limited to periodic monitoring with imaging tests, control of cardiovascular risk factors and treatment with statins and antiplatelet therapy. There is no effective pharmacological treatment capable of limiting AAA progression or avoiding their rupture. At present, the aortic diameter is the only marker of risk of rupture and determines the need for surgical repair when it reaches values greater than 5.5cm. This review addresses the main aspects related to epidemiology, risk factors, diagnosis and clinical management of AAA, exposes the difficulties to have good biomarkers of this pathology and describes the strategies for the identification of new therapeutic targets and biomarkers in AAA.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Biomarkers/metabolism , Molecular Targeted Therapy , Aged , Aortic Aneurysm, Abdominal/diagnosis , Aortic Aneurysm, Abdominal/therapy , Aortic Rupture/prevention & control , Disease Progression , Female , Humans , Male , Prevalence , Risk Factors
12.
J Clin Med ; 9(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888089

ABSTRACT

High-density lipoproteins cholesterol (HDLc) levels are decreased in abdominal aortic aneurysm (AAA), which is hallmarked by autoimmunity and lipid aortic deposits. To investigate whether IgG anti-HDL antibodies were present in AAA and their potential association with clinical features, IgG anti-HDL and total IgG along with HDLc plasma levels were measured in 488 AAA patients and 184 controls from the Viborg Vascular (VIVA) study, and in tissue-conditioned media from AAA intraluminal thrombus and media layer samples compared to control aortas. Higher IgG anti-HDL levels were found in AAA compared to controls, even after correcting for total IgG, and after adjusting for potential confounders. IgG anti-HDL levels were correlated with aortic diameter in univariate and adjusted multivariate analyses. IgG anti-HDL antibodies were negatively associated with HDLc levels before and after correcting for potential confounders. Increased anti-HDL antibodies were identified in tissue-conditioned media from AAA samples compared to healthy aortas, with higher levels being observed in the media layer. In conclusion, increased IgG anti-HDL levels (both in plasma and in tissue) are linked to AAA, associated with aortic diameter and HDLc levels. These data suggest a potential immune response against HDL in AAA and support an emerging role of anti-HDL antibodies in AAA.

13.
Arterioscler Thromb Vasc Biol ; 38(11): 2750-2754, 2018 11.
Article in English | MEDLINE | ID: mdl-30354236

ABSTRACT

Objective- The ability of HDL (high-density lipoprotein) to promote macrophage cholesterol efflux is considered the main HDL cardioprotective function. Abdominal aortic aneurysm (AAA) is usually characterized by cholesterol accumulation and macrophage infiltration in the aortic wall. Here, we aim to evaluate the composition of circulating HDL particles and their potential for promoting macrophage cholesterol efflux in AAA subjects. Approach and Results- First, we randomly selected AAA and control subjects from Spain. The AAA patients in the Spanish cohort showed lower plasma apoA-I levels concomitantly associated with low levels of plasma HDL cholesterol and the amount of preß-HDL particles. We determined macrophage cholesterol efflux to apoB-depleted plasma, which contains mature HDL, preß-HDL particles and HDL regulatory proteins. ApoB-depleted plasma from AAA patients displayed an impaired ability to promote macrophage cholesterol efflux. Next, we replicated the experiments with AAA and control subjects derived from Danish cohort. Danish AAA patients also showed lower apoA-I levels and a defective HDL-mediated macrophage cholesterol efflux. Conclusions- AAA patients show impaired HDL-facilitated cholesterol removal from macrophages, which could be mechanistically linked to AAA.


Subject(s)
Aortic Aneurysm, Abdominal/blood , Cholesterol, HDL/blood , Macrophages/metabolism , Aged , Aortic Aneurysm, Abdominal/diagnostic imaging , Apolipoprotein A-I/blood , Apolipoprotein B-100/blood , Case-Control Studies , Denmark , Female , High-Density Lipoproteins, Pre-beta/blood , Humans , Male , Spain
15.
J Am Heart Assoc ; 7(3)2018 01 26.
Article in English | MEDLINE | ID: mdl-29374048

ABSTRACT

BACKGROUND: Animal models support dietary omega-3 fatty acids protection against abdominal aortic aneurysm (AAA), but clinical data are scarce. The sum of red blood cell proportions of the omega-3 eicosapentaenoic and docosahexaenoic acids, known as omega-3 index, is a valid surrogate for long-term omega-3 intake. We investigated the association between the omega-3 index and the prevalence and progression of AAA. We also investigated associations between AAA and arachidonic acid, an omega-6 fatty acid that is a substrate for proinflammatory lipid mediators. METHODS AND RESULTS: We obtained blood samples from 498 AAA patients (maximal aortic diameter ≥30 mm) within a population-based ultrasound-screening trial in men and from 199 age-matched controls who screened negative. We determined the fatty acids of red blood cells by gas chromatography. During a median follow-up of 4.85 years, 141 AAA patients reached criteria for vascular surgical repair. Participants were high consumers of omega-3 (average omega-3 index: 7.6%). No significant associations were found for omega-3 index. In contrast, arachidonic acid in AAA patients was higher than in controls (P<0.001), and individuals in the upper tertile of arachidonic acid at baseline had higher probability of having AAA (odds ratio: 1.309; 95% confidence interval, 1.021-1.678; P=0.033). AAA patients at the upper tertile of arachidonic acid at baseline had a 54% higher risk of needing surgical repair during follow-up (hazard ratio: 1.544; 95% confidence interval, 1.127-2.114; P=0.007). CONCLUSIONS: Omega-3 index is unrelated to men with AAA from a country in which fish consumption is customarily high. Arachidonic acid is associated with AAA presence and progression. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00662480.


Subject(s)
Aortic Aneurysm, Abdominal/blood , Aortic Aneurysm, Abdominal/epidemiology , Arachidonic Acid/blood , Aged , Aortic Aneurysm, Abdominal/diagnostic imaging , Biomarkers/blood , Denmark/epidemiology , Diet , Disease Progression , Fatty Acids, Omega-3/blood , Humans , Male , Prevalence , Prognosis , Randomized Controlled Trials as Topic , Risk Factors , Time Factors , Ultrasonography
16.
Int J Mol Sci ; 18(11)2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29099757

ABSTRACT

Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the main sources of reactive oxygen species (ROS) in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO) and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL) in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.


Subject(s)
Atherosclerosis/metabolism , Oxidative Stress , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Biomarkers/metabolism , Humans , Molecular Targeted Therapy/methods , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vascular Remodeling/drug effects
17.
Clin Sci (Lond) ; 131(22): 2707-2719, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28982723

ABSTRACT

Abdominal aortic aneurysm (AAA) evolution is unpredictable and no specific treatment exists for AAA, except surgery to prevent aortic rupture. Galectin-3 has been previously associated with CVD, but its potential role in AAA has not been addressed. Galectin-3 levels were increased in the plasma of AAA patients (n=225) compared with the control group (n=100). In addition, galectin-3 concentrations were associated with the need for surgical repair, independently of potential confounding factors. Galectin-3 mRNA and protein expression were increased in human AAA samples compared with healthy aortas. Experimental AAA in mice was induced via aortic elastase perfusion. Mice were treated intravenously with the galectin-3 inhibitor modified citrus pectin (MCP, 10 mg/kg, every other day) or saline. Similar to humans, galectin-3 serum and aortic mRNA levels were also increased in elastase-induced AAA mice compared with control mice. Mice treated with MCP showed decreased aortic dilation, as well as elastin degradation, vascular smooth muscle cell (VSMC) loss, and macrophage content at day 14 postelastase perfusion compared with control mice. The underlying mechanism(s) of the protective effect of MCP was associated with a decrease in galectin-3 and cytokine (mainly CCL5) mRNA and protein expression. Interestingly, galectin-3 induced CCL5 expression by a mechanism involving STAT3 activation in VSMC. Accordingly, MCP treatment decreased STAT3 phosphorylation in elastase-induced AAA. In conclusion, increased galectin-3 levels are associated with AAA progression, while galectin-3 inhibition decreased experimental AAA development. Our data suggest the potential role of galectin-3 as a therapeutic target in AAA.


Subject(s)
Aorta, Abdominal/drug effects , Aortic Aneurysm, Abdominal/prevention & control , Galectin 3/antagonists & inhibitors , Galectin 3/blood , Pancreatic Elastase , Pectins/pharmacology , Animals , Aorta, Abdominal/enzymology , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/blood , Aortic Aneurysm, Abdominal/enzymology , Aortic Aneurysm, Abdominal/pathology , Blood Proteins , Case-Control Studies , Cells, Cultured , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Galectin 3/genetics , Galectin 3/metabolism , Galectins , Humans , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Phosphorylation , RNA, Messenger/blood , RNA, Messenger/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Time Factors , Up-Regulation
18.
Sci Rep ; 6: 38477, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934969

ABSTRACT

High-density lipoproteins (HDLs) are complex protein and lipid assemblies whose composition is known to change in diverse pathological situations. Analysis of the HDL proteome can thus provide insight into the main mechanisms underlying abdominal aortic aneurysm (AAA) and potentially detect novel systemic biomarkers. We performed a multiplexed quantitative proteomics analysis of HDLs isolated from plasma of AAA patients (N = 14) and control study participants (N = 7). Validation was performed by western-blot (HDL), immunohistochemistry (tissue), and ELISA (plasma). HDL from AAA patients showed elevated expression of peroxiredoxin-6 (PRDX6), HLA class I histocompatibility antigen (HLA-I), retinol-binding protein 4, and paraoxonase/arylesterase 1 (PON1), whereas α-2 macroglobulin and C4b-binding protein were decreased. The main pathways associated with HDL alterations in AAA were oxidative stress and immune-inflammatory responses. In AAA tissue, PRDX6 colocalized with neutrophils, vascular smooth muscle cells, and lipid oxidation. Moreover, plasma PRDX6 was higher in AAA (N = 47) than in controls (N = 27), reflecting increased systemic oxidative stress. Finally, a positive correlation was recorded between PRDX6 and AAA diameter. The analysis of the HDL proteome demonstrates that redox imbalance is a major mechanism in AAA, identifying the antioxidant PRDX6 as a novel systemic biomarker of AAA.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Lipoproteins, HDL/metabolism , Peroxiredoxin VI/metabolism , Proteome , Proteomics , Aged , Aortic Aneurysm, Abdominal/blood , Aortic Aneurysm, Abdominal/diagnosis , Biomarkers , Chromatography, Liquid , Comorbidity , Computational Biology/methods , Female , Humans , Male , Middle Aged , Peroxiredoxin VI/blood , Proteomics/methods , Reproducibility of Results , Tandem Mass Spectrometry , Workflow
19.
Clin Sci (Lond) ; 130(12): 1027-38, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26993251

ABSTRACT

Abdominal aortic aneurysm (AAA) is a permanent dilation of the aorta due to excessive proteolytic, oxidative and inflammatory injury of the aortic wall. We aimed to identify novel mediators involved in AAA pathophysiology, which could lead to novel therapeutic approaches. For that purpose, plasma from four AAA patients and four controls were analysed by a label-free proteomic approach. Among identified proteins, paraoxonase-1 (PON1) was decreased in plasma of AAA patients compared with controls, which was further validated in a bigger cohort of samples by ELISA. The phenylesterase enzymatic activity of PON1 was also decreased in serum of AAA patients compared with controls. To address the potential role of PON1 as a mediator of AAA, experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and human transgenic PON1 (HuTgPON1) mice. Similar to humans, PON1 activity was also decreased in serum of elastase-induced AAA mice compared with healthy mice. Interestingly, overexpression of PON1 was accompanied by smaller aortic dilation and higher elastin and vascular smooth muscle cell (VSMC) content in the AAA of HuTgPON1 compared with WT mice. Moreover, HuTgPON1 mice display decreased oxidative stress and apoptosis, as well as macrophage infiltration and monocyte chemoattractant protein-1 (MCP1) expression, in elastase-induced AAA. In conclusion, decreased circulating PON1 activity is associated with human and experimental AAA. PON1 overexpression in mice protects against AAA progression by reducing oxidative stress, apoptosis and inflammation, suggesting that strategies aimed at increasing PON1 activity could prevent AAA.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Aryldialkylphosphatase/metabolism , Animals , Aortic Aneurysm, Abdominal/prevention & control , Apoptosis/drug effects , Disease Models, Animal , Disease Progression , Humans , Inflammation/metabolism , Macrophages/metabolism , Male , Mice , Mice, Transgenic , Proteomics/methods
20.
Stroke ; 47(1): 206-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26628388

ABSTRACT

BACKGROUND AND PURPOSE: 3ß-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice. METHODS: Dhcr24(+/-) and wild-type (WT) mice were subjected to permanent middle cerebral artery occlusion. In another set of experiments, WT mice were treated intraperitoneally either with vehicle or U18666A (seladin-1/DHCR24 inhibitor, 10 mg/kg) 30 minutes after middle cerebral artery occlusion. Brains were removed 48 h after middle cerebral artery occlusion for infarct volume determination. For protein expression determination, peri-infarct region was obtained 24 h after ischemia, and Western blot or cytometric bead array was performed. RESULTS: Dhcr24(+/-) mice displayed larger infarct volumes after middle cerebral artery occlusion than their WT littermates. Treatment of WT mice with the seladin-1/DHCR24 inhibitor U18666A also increased ischemic lesion. Inflammation-related mediators were increased after ischemia in Dhcr24(+/-) mice compared with WT counterparts. Consistent with a role of cholesterol in proper function of glutamate transporter EAAT2 in membrane lipid rafts, we found a decreased association of EAAT2 with lipid rafts after ischemia when DHCR24 is genetically deleted or pharmacologically inhibited. Accordingly, treatment with U18666A decreases [(3)H]-glutamate uptake in cultured astrocytes. CONCLUSIONS: These results support the idea that lipid raft integrity, ensured by seladin-1/DHCR24, plays a crucial protective role in the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess.


Subject(s)
Excitatory Amino Acid Transporter 2/metabolism , Membrane Microdomains/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/deficiency , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/deficiency , Stroke/metabolism , Stroke/prevention & control , Androstenes/pharmacology , Animals , Animals, Newborn , Cells, Cultured , Excitatory Amino Acid Transporter 2/genetics , Glutamic Acid/metabolism , Male , Membrane Microdomains/drug effects , Membrane Microdomains/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Stroke/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...