Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932487

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.

2.
ACS Catal ; 12(10): 6060-6067, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35633900

ABSTRACT

A plethora of drug molecules and agrochemicals contain the sulfonamide functional group. However, sulfonamides are seldom viewed as synthetically useful functional groups. To confront this limitation, a late-stage functionalization strategy is described, which allows sulfonamides to be converted to pivotal sulfonyl radical intermediates. This methodology exploits a metal-free photocatalytic approach to access radical chemistry, which is harnessed by combining pharmaceutically relevant sulfonamides with an assortment of alkene fragments. Additionally, the sulfinate anion can be readily obtained, further broadening the options for sulfonamide functionalization. Mechanistic studies suggest that energy-transfer catalysis (EnT) is in operation.

3.
Chemistry ; 28(1): e202103384, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34658083

ABSTRACT

Nitriles are recurring motifs in bioactive molecules and versatile functional groups in synthetic chemistry. Despite recent progress, direct introduction of a nitrile moiety in heteroarenes remains challenging. Recent developments in electrochemical reactions pave the way to more practical cyanation protocols. However, currently available methods typically require hazardous cyanide sources, expensive mediators, and often suffer from narrow substrate scope and laborious reaction set-up. To address the limitations of current synthetic methods, herein, an effective, sustainable, and scalable procedure for the direct C(sp2 )-H cyanation of aromatic N-heterocycles with a user-friendly flow-electrochemical set-up is reported. Furthermore, high substrate and functional-group tolerance is demonstrated, allowing late-stage functionalization of drug-like scaffolds, such as natural products and pharmaceuticals.


Subject(s)
Biological Products , Nitriles , Cyanides
4.
Eur J Med Chem ; 228: 114028, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34920170

ABSTRACT

A common challenge for medicinal chemists is to reduce the pKa of strongly basic groups' conjugate acids into a range that preserves the desired effects, usually potency and/or solubility, but avoids undesired effects like high volume of distribution (Vd), limited membrane permeation, and off-target binding to, notably, the hERG channel and monoamine receptors. We faced this challenge with a 3,4,5,6-tetrahydropyridine-2-amine scaffold harboring an amidine, a key structural component of potential inhibitors of BACE1, the rate-limiting enzyme in the production of Aß species that make up amyloid plaques in Alzheimer's disease. In our endeavor to balance potency with desirable properties to achieve brain penetration, we introduced a diverse set of groups in beta position of the amidine that modulate logD, PSA and pKa. Given the synthetic challenge to prepare these highly functionalized warheads, we first developed a design flow including predicted physicochemical parameters which allowed us to select only the most promising candidates for synthesis. For this we evaluated a set of commercial packages to predict physicochemical properties, which can guide medicinal chemists in their endeavors to modulate pKa values of amidine and amine bases.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Electrons , Enzyme Inhibitors/pharmacology , Pyrrolidines/pharmacology , Amidines/chemistry , Amidines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Chemistry, Physical , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Structure-Activity Relationship
5.
Angew Chem Int Ed Engl ; 60(49): 25680-25687, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34558788

ABSTRACT

Methods for establishing the absolute configuration of sulfur-stereogenic aza-sulfur derivatives are scarce, often relying on cumbersome protocols and a limited pool of enantioenriched starting materials. We have addressed this by exploiting, for the first time, a feature of sulfonimidamides in which it is possible for tautomeric structures to also be enantiomeric. Such sulfonimidamides can readily generate prochiral ions, which we have exploited in an enantioselective alkylation process. Selectivity is achieved using a readily prepared bis-quaternized phase-transfer catalyst. The overall process establishes the capability of configurationally labile aza-sulfur species to be used in asymmetric catalysis.

7.
J Org Chem ; 83(16): 9510-9516, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29932332

ABSTRACT

Sulfonimidamides are an emerging bioisosteric replacement in medicinal chemistry projects, and therefore new chemistries are necessary to access this functionality. The general synthesis of CF3-sulfonimidamides from an activated bench-stable transfer reagent is described. A diverse reaction scope is demonstrated, with a wide range of nucleophilic amines being tolerated in this transformation. The CF3-sulfonimidamides obtained contain an additional diversity point, in the form a protected imine, that could be unmasked to allow late stage modifications.

8.
J Med Chem ; 61(12): 5292-5303, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29809004

ABSTRACT

In previous studies, the introduction of electron withdrawing groups to 1,4-oxazine BACE1 inhibitors reduced the p Ka of the amidine group, resulting in compound 2 that showed excellent in vivo efficacy, lowering Aß levels in brain and CSF. However, a suboptimal cardiovascular safety margin, based on QTc prolongation, prevented further progression. Further optimization resulted in the replacement of the 2-fluoro substituent by a CF3-group, which reduced hERG inhibition. This has led to compound 3, with an improved cardiovascular safety margin and sufficiently safe in GLP toxicity studies to progress into clinical trials.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Administration, Intravenous , Administration, Oral , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Aspartic Acid Endopeptidases/metabolism , Biological Availability , Cardiovascular Diseases/chemically induced , Chemical and Drug Induced Liver Injury/etiology , Dogs , Drug Evaluation, Preclinical/methods , Drug Stability , ERG1 Potassium Channel/metabolism , Guinea Pigs , Humans , Male , Mice, Inbred Strains , Oxazines/chemistry , Peptide Fragments/cerebrospinal fluid , Protease Inhibitors/administration & dosage , Protease Inhibitors/adverse effects , Rats, Sprague-Dawley , Structure-Activity Relationship
9.
J Org Chem ; 82(18): 9898-9904, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28809121

ABSTRACT

A general synthesis of CF3-sulfonimidamides from sulfinamides under both batch and continuous flow conditions is described. The reaction proceeds via a sulfonimidoyl fluoride intermediate. A reaction scope showing good group variation on the substituents of both nitrogen atoms is also presented.

10.
J Med Chem ; 60(4): 1272-1291, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28106992

ABSTRACT

A mini-HTS on 4000 compounds selected using 2D fragment-based similarity and 3D pharmacophoric and shape similarity to known selective tau aggregate binders identified N-(6-methylpyridin-2-yl)quinolin-2-amine 10 as a novel potent binder to human AD aggregated tau with modest selectivity versus aggregated ß-amyloid (Aß). Initial medicinal chemistry efforts identified key elements for potency and selectivity, as well as suitable positions for radiofluorination, leading to a first generation of fluoroalkyl-substituted quinoline tau binding ligands with suboptimal physicochemical properties. Further optimization toward a more optimal pharmacokinetic profile led to the discovery of 1,5-naphthyridine 75, a potent and selective tau aggregate binder with potential as a tau PET tracer.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/analysis , Brain/diagnostic imaging , Naphthyridines/chemistry , Positron-Emission Tomography/methods , Protein Aggregation, Pathological/diagnostic imaging , tau Proteins/analysis , Amination , Animals , Haplorhini , Humans , Mice , Naphthyridines/pharmacokinetics , Rats
11.
J Med Chem ; 58(20): 8216-35, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26378740

ABSTRACT

1,4-Oxazines are presented, which show good in vitro inhibition in enzymatic and cellular BACE1 assays. We describe lead optimization focused on reducing the amidine pKa while optimizing interactions in the BACE1 active site. Our strategy permitted modulation of properties such as permeation and especially P-glycoprotein efflux. This led to compounds which were orally bioavailable, centrally active, and which demonstrated robust lowering of brain and CSF Aß levels, respectively, in mouse and dog models. The amyloid lowering potential of these molecules makes them valuable leads in the search for new BACE1 inhibitors for the treatment of Alzheimer's disease.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Oxazines/chemical synthesis , Oxazines/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Biological Availability , Blood Proteins/metabolism , Blood-Brain Barrier , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Dogs , Drug Design , Female , Humans , Male , Mice , Models, Molecular , Oxazines/pharmacokinetics , Protein Binding
12.
J Biol Chem ; 282(21): 15833-42, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17400555

ABSTRACT

The clinical immunosuppressant FTY720 is a sphingosine analogue that, once phosphorylated by sphingosine kinase 2 (Sphk2), is an agonist of multiple receptor subtypes for sphingosine 1-phosphate. Short exposures to FTY720 afford long term protection in lymphoproliferative and autoimmune disease models, presumably by inducing apoptosis in subsets of cells essential for pathogenesis. Sphingosine itself is pro-apoptotic, and apoptosis induced with FTY720 or sphingosine is thought to proceed independently of their phosphorylation. Following chemical mutagenesis of Jurkat cells we isolated mutants that are selectively resistant to FTY720 analogue AAL(R), as well as natural sphingolipid bases, including sphingosine. Cells lacking functional Sphk2 were resistant to apoptosis induced with AAL(R), indicating that apoptosis proceeds through AAL(R) phosphorylation. Phosphorylation of AAL(R) was also required for induction of lymphocyte apoptosis in mice, as apoptosis was not induced with the non-phosphorylatable chiral analogue, AAL(S). Apoptosis was induced in the spleen but not the thymus of mice administered 1 mg/kg AAL(R), correlating with levels of AAL(R)-phosphate (AFD(R)) in organ extracts. AFD(R) did not induce apoptosis when added to the cell culture medium, indicating that it induces apoptosis through an intracellular target. NBD-labeled AAL(R) localized to the endoplasmic reticulum, and AAL(R) treatment resulted in elevated cytosolic calcium, Bax redistribution from cytosol to mitochondrial and endoplasmic reticulum membranes, and caspase-independent mitochondrial permeabilization in Jurkat cells. We therefore describe an apoptotic pathway triggered by intracellular accumulation of sphingolipid base phosphates and suggest that sphingoid base substrates for Sphk2 acting intracellularly could be useful in the treatment of lymphoproliferative diseases.


Subject(s)
Apoptosis/drug effects , Calcium Signaling/drug effects , Immunosuppressive Agents/pharmacology , Lymphoproliferative Disorders/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Animals , Apoptosis/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/enzymology , Autoimmune Diseases/genetics , Calcium Signaling/genetics , Caspases/metabolism , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/genetics , Drug Resistance, Neoplasm/drug effects , Endoplasmic Reticulum/enzymology , Fingolimod Hydrochloride , HeLa Cells , Humans , Jurkat Cells , Lymphoproliferative Disorders/drug therapy , Lymphoproliferative Disorders/genetics , Mice , Mice, Knockout , Mitochondria , Mutagenesis , Organ Specificity/drug effects , Phosphorylation/drug effects , Protein Transport/drug effects , Protein Transport/genetics , Receptors, Lysosphingolipid/antagonists & inhibitors , Sphingolipids/metabolism , Sphingolipids/pharmacology , Sphingosine/pharmacology , Spleen/enzymology , Thymus Gland/enzymology , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...