Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 14(5): 2117-2128, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37206134

ABSTRACT

Second harmonic generation (SHG) imaging microscopy of thick biological tissues is affected by the presence of aberrations and scattering within the sample. Moreover, additional problems, such as uncontrolled movements, appear when imaging in-vivo. Deconvolution methods can be used to overcome these limitations under some conditions. In particular, we present here a technique based on a marginal blind deconvolution approach for improving SHG images obtained in vivo in the human eye (cornea and sclera). Different image quality metrics are used to quantify the attained improvement. Collagen fibers in both cornea and sclera are better visualized and their spatial distributions accurately assessed. This might be a useful tool to better discriminate between healthy and pathological tissues, especially those where changes in collagen distribution occur.

2.
Biomed Res Int ; 2022: 3328818, 2022.
Article in English | MEDLINE | ID: mdl-35937389

ABSTRACT

Normal aging affects the different structures of teeth, in particular, the dentine. These changes are useful in forensic disciplines as a tool for age estimation. Although multiphoton (MP) microscopy has been used to explore dental pieces, a relationship between age and MP response of the human dentine has not been proposed yet. The relationship between MP signals and natural dentine aging is investigated herein. An index of age (INAG) combining two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) images has been used to quantify these changes. The results show that the INAG significantly decreases with age. Moreover, peritubular dentine size and collagen internal properties are also modified with age. This information confirms the usefulness of this technique in forensic age estimation after disasters (natural or manmade) with a lack of comprehensive fingerprint database. Courts and other government authorities might also benefit from this tool when the official age of individuals under special circumstances is required for legal or medical reasons.


Subject(s)
Microscopy, Fluorescence, Multiphoton , Tooth , Collagen , Forensic Sciences , Humans , Microscopy, Fluorescence, Multiphoton/methods , Photons
3.
Polymers (Basel) ; 14(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015534

ABSTRACT

Natural extracellular matrix (ECM) collagen membranes are frequently used for bone regeneration procedures. Some disadvantages, such as rapid degradation and questionable mechanical properties, limit their clinical use. These membranes have a heterologous origin and may proceed from different tissues. Biomineralization is a process in which hydroxyapatite deposits mainly in collagen fibrils of the matrices. However, when this deposition occurs on the ECM, its mechanical properties are increased, facilitating bone regeneration. The objective of the present research is to ascertain if different membranes from distinct origins may undergo biomineralization. Nanomechanical properties, scanning electron (SEM) and multiphoton (MP) microscopy imaging were performed in three commercially available ECMs before and after immersion in simulated body fluid solution for 7 and 21 d. The matrices coming from porcine dermis increased their nanomechanical properties and they showed considerable mineralization after 21 d, as observed in structural changes detected through SEM and MP microscopy. It is hypothesized that the more abundant crosslinking and the presence of elastin fibers within this membrane explains the encountered favorable behavior.

4.
Elife ; 112022 02 24.
Article in English | MEDLINE | ID: mdl-35199642

ABSTRACT

The NLRP3 inflammasome coordinates inflammation in response to different pathogen- and damage-associated molecular patterns, being implicated in different infectious, chronic inflammatory, metabolic and degenerative diseases. In chronic tendinopathic lesions, different non-resolving mechanisms produce a degenerative condition that impairs tissue healing and which therefore complicates their clinical management. Percutaneous needle electrolysis consists of the application of a galvanic current and is an emerging treatment for tendinopathies. In the present study, we found that galvanic current activates the NLRP3 inflammasome and induces an inflammatory response that promotes a collagen-mediated regeneration of the tendon in mice. This study establishes the molecular mechanism of percutaneous electrolysis that can be used to treat chronic lesions and describes the beneficial effects of an induced inflammasome-related response.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Collagen Type I , Inflammasomes/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tendons/metabolism
5.
Nature ; 583(7814): 48-54, 2020 07.
Article in English | MEDLINE | ID: mdl-32572207

ABSTRACT

Observation of the neutrinoless double ß decay is the only practical way to establish that neutrinos are their own antiparticles1. Because of the small masses of neutrinos, the lifetime of neutrinoless double ß decay is expected to be at least ten orders of magnitude greater than the typical lifetimes of natural radioactive chains, which can mimic the experimental signature of neutrinoless double ß decay2. The most robust identification of neutrinoless double ß decay requires the definition of a signature signal-such as the observation of the daughter atom in the decay-that cannot be generated by radioactive backgrounds, as well as excellent energy resolution. In particular, the neutrinoless double ß decay of 136Xe could be established by detecting the daughter atom, 136Ba2+, in its doubly ionized state3-8. Here we demonstrate an important step towards a 'barium-tagging' experiment, which identifies double ß decay through the detection of a single Ba2+ ion. We propose a fluorescent bicolour indicator as the core of a sensor that can detect single Ba2+ ions in a high-pressure xenon gas detector. In a sensor made of a monolayer of such indicators, the Ba2+ dication would be captured by one of the molecules and generate a Ba2+-coordinated species with distinct photophysical properties. The presence of such a single Ba2+-coordinated indicator would be revealed by its response to repeated interrogation with a laser system, enabling the development of a sensor able to detect single Ba2+ ions in high-pressure xenon gas detectors for barium-tagging experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...