Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Photochem Photobiol B ; 235: 112550, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049383

ABSTRACT

Photoperiod can profoundly affect the physiology of teleost fish, including accelerated growth here defined as "fast growth phenotypes". However, molecular regulatory networks (MRNs) and biological processes being affected by continuous illumination and which allow some teleost species evident plasticity to thrive under this condition are not yet clear. Therefore, to provide a broad perspective of such mechanisms, Chirostoma estor fish were raised and sampled for growth under a simulated control (LD) 12 h Light: 12 h Dark or a continuous illumination (LL) 24 h Light: 0 h Dark since fertilization. The experiment lasted 12 weeks after hatching (wah), the time at which fish were sampled for growth, length, and whole-body cortisol levels. Additionally, 3 heads of fish from each treatment were used to perform a de novo transcriptome analysis using Next-Generation Sequencing. Fish in LL developed the fast growth phenotype with significant differences visible at 4 wah and gained 66% more mass by 12 wah than LD fish. Cortisol levels under LL were below basal levels at all times compared to fish in LD, suggesting circadian dysregulation effects. A strong effect of LL was observed in samples with a generalized down-regulation of genes except for Reactive Oxygen Species responses, genome stability, and growth biological processes. To our knowledge, this work is the first study using a transcriptomic approach to understand environmentally sensitive MRNs that mediate phenotypic plasticity in fish submitted to continuous illumination. This study gives new insights into the plasticity mechanisms of teleost fish under constant illumination.


Subject(s)
Biological Phenomena , Circadian Rhythm , Animals , Circadian Rhythm/physiology , Fishes/genetics , Hydrocortisone , Light , Phenotype , Photoperiod , Reactive Oxygen Species , Transcriptome
2.
Neotrop. ichthyol ; 18(2): e190089, 2020. tab
Article in English | LILACS, VETINDEX | ID: biblio-1135374

ABSTRACT

Docosahexaenoic acid (DHA) is the most critical and least available omega-3 fatty acid in the Western human diet. Currently, the source of omega-3 long chain polyunsaturated fatty acids (LC-PUFA) is mainly dependent on wild fisheries, making this resource unsustainable in the foreseeable future. In recent years, a high rate of biosynthesis and accumulation of DHA has been discovered in a freshwater species (Chirostoma estor) belonging to the Atherinopsidae family. Interest in evaluating fatty acid composition in other members of the family has emerged, so this study compiles original data of flesh composition of eight atherinopsid species from freshwater and brackish environments, either wild or cultured. High levels of DHA (16 to 31%) were found in all analyzed members of the family, except in C. grandocule, independently of their habitat or origin. The analyzed species of the Jordani group (C. estor, C. promelas and C. humboldtianum) showed high DHA and low EPA levels (<0.5%) as previously reported for cultured C. estor. The low trophic niche of these atherinopsids and their fatty acid accumulation capabilities are factors that make these species noteworthy candidates for sustainable aquaculture.(AU)


O ácido docosahexaenóico (DHA) é o ácido graxo ômega-3 mais importante e menos disponível na dieta humana ocidental. Atualmente, a fonte de ácidos graxos poliinsaturados de cadeia longa ômega-3 (LC-PUFA) depende principalmente da pesca extrativista, tornando esse recurso insustentável em um futuro próximo. Nos últimos anos, uma alta taxa de biossíntese e acúmulo de DHA foi descoberta em uma espécie de água doce (Chirostoma estor) pertencente à família Atherinopsidae. Deste modo, surgiu o interesse em avaliar a composição de ácidos graxos em outros membros da família. Portanto, este estudo compila dados originais da composição de carne de oito espécies de aterinopsídeos de ambientes de água doce e salobra, selvagens ou cultivadas. Altos níveis de DHA (16 a 31%) foram encontrados em todos os membros da família analisados, exceto em C. grandocule, independentemente de seu habitat ou origem. As espécies analisadas do grupo Jordani (C. estor, C. promelas e C. humboldtianum) apresentaram altos níveis de DHA e EPA baixos (<0,5%), como relatado anteriormente para C. estor cultivado. O baixo nicho trófico desses aterinopsídeos e sua capacidade de acumulação de ácidos graxos são fatores que tornam essas espécies notáveis candidatas à aquicultura sustentável.(AU)


Subject(s)
Animals , Ecosystem , Aquaculture , Smegmamorpha/physiology , Fatty Acids , Fatty Acids, Omega-3 , Docosahexaenoic Acids , Fresh Water
3.
J Fish Biol ; 93(2): 229-237, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29931822

ABSTRACT

The present study evaluates the influence of continuous light on phenotypic sex ratios in Chirostoma estor, a temperature sex determination animal model. Relative gene expression levels of 5 day old larvae were performed on two early gonad differentiation genes (sox9 and foxl2), two stress axis activation genes (gcr1 and crf) and four reactive oxygen species (ROS) antagonist effector genes (sod2, ucp2, gsr and cat). Two light treatments were applied from fertilization; control (12L:12D) simulated natural photoperiod and a continuous illumination photoperiod. By the end of the trial (12 weeks after hatching), differentiated and normal gonads were clearly identifiable in both treatments by histological observations. Regarding sex ratio, 73% of phenotypic males were found in continuous illumination compared with 40% in controls. Consistently, the sox9 gene (involved in early testis differentiation) showed an over expression in 64% of the individual larvae analysed compared with foxl2 (ovarian differentiation) suggesting a masculinization tendency in continuous illumination. On the other hand, only 36% of individuals showed the same tendency in the control treatment consistent with phenotypic sex ratios found under normal culture conditions. Relative gene expression results did not show significant difference in sod2, ucp2 and gcr1 levels, but cat, gsr and crf showed significantly higher expression levels in the continuous illumination treatment suggesting that both, the stress axis and ROS response mechanisms were activated at this time. This study suggests, a link between continuous light, oxidative stress and environmental sex determination in vertebrates. However, further research is necessary to describe this possible upstream mechanism that may drive some aspects of sexual plasticity in vertebrates.


Subject(s)
Fishes/growth & development , Oxidative Stress , Photoperiod , Sex Determination Processes , Sex Differentiation , Animals , Female , Fishes/genetics , Fishes/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Gonads/growth & development , Lighting , Male , Ovary/growth & development , Sex Ratio , Temperature , Testis/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Lipid Res ; 55(7): 1408-19, 2014 07.
Article in English | MEDLINE | ID: mdl-24792929

ABSTRACT

Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.


Subject(s)
Fatty Acid Desaturases , Fatty Acids, Unsaturated , Fish Proteins , Fishes , Animals , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/genetics , Fishes/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...