Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(12): 113470, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37979166

ABSTRACT

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Subject(s)
Carcinoma , Intermediate Filaments , Humans , Vimentin/metabolism , Phosphorylation , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Carcinoma/pathology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Neoplasm Metastasis/pathology
3.
Cell Rep Methods ; 3(10): 100599, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37797618

ABSTRACT

For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased toward synergistic agents and results do not generalize out of distribution. During 5 rounds of experimentation, we employ sequential model optimization with a deep learning model to select drug combinations increasingly enriched for synergism and active against a cancer cell line-evaluating only ∼5% of the total search space. Moreover, we find that learned drug embeddings (using structural information) begin to reflect biological mechanisms. In silico benchmarking suggests search queries are ∼5-10× enriched for highly synergistic drug combinations by using sequential rounds of evaluation when compared with random selection or ∼3× when using a pretrained model.


Subject(s)
Computational Biology , Neoplasms , Humans , Drug Synergism , Computational Biology/methods , Drug Combinations , Neoplasms/drug therapy
4.
Nature ; 622(7983): 507-513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730997

ABSTRACT

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Subject(s)
Antineoplastic Agents , Chemistry Techniques, Synthetic , Imines , Spiro Compounds , Humans , Apoptosis/drug effects , Cell Line, Tumor , Imines/chemical synthesis , Imines/chemistry , Imines/pharmacology , Neoplasms/drug therapy , Proteomics , Ribosomes/metabolism , RNA-Binding Proteins/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
5.
Cell Chem Biol ; 30(9): 1115-1134.e10, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37467751

ABSTRACT

The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.


Subject(s)
B7-H1 Antigen , Interferon-gamma , Autophagy , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , Hydroxyproline , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Humans
6.
J Am Chem Soc ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017374

ABSTRACT

Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) malignancy. YM155 is a highly potent broad-spectrum anti-cancer drug that was derived from a phenotypic screen for functional inhibitors of survivin expression, but for which the relevant biomolecular target remains unknown. Presumably as a result of its lack of cell-type selectivity, YM155 has suffered from tolerability issues in the clinic. Based on its structural similarity to the GBM-selective prodrug RIPGBM, here, we report the design, synthesis, and characterization of a prodrug form of YM155, termed aYM155. aYM155 displays potent cell killing activity against a broad panel of patient-derived GBM cancer stem-like cells (IC50 = 0.7-10 nM), as well as EGFR-amplified and EGFR variant III-expressing (EGFRvIII) cell lines (IC50 = 3.8-36 nM), and becomes activated in a cell-type-dependent manner. Mass spectrometry-based analysis indicates that enhanced cell-type selectivity results from relative rates of prodrug activation in transformed versus non-transformed cell types. The prodrug strategy also facilitates transport into the brain (brain-to-plasma ratio, aYM155 = 0.56; YM155 = BLQ). In addition, we determine that the survivin-suppressing and apoptosis-inducing activities of YM155 involve its interaction with receptor-interacting protein kinase 2 (RIPK2). In an orthotopic intracranial GBM xenograft model, aYM155 prodrug significantly inhibits brain tumor growth in vivo, which correlates with cell-type selective survivin-based pharmacodynamic effects.

7.
Inorg Chem ; 62(17): 6779-6785, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37079909

ABSTRACT

Tethered ruthenium(II) complexes [Ru(η6:κ1-arene:N)Cl2] (where arene:N is 2-aminobiphenyl (1) and 2-benzylpyridine (2)) can convert into their open-tethered chlorido counterparts [Ru(η6-arene:NH)Cl3], 1·HCl and 2·HCl, at room temperature via solid-state reaction in the presence of HCl vapors. The reaction is accompanied by a change in color, is fully reversible, and crystallinity is maintained in both molecular materials. Organoruthenium tethers are presented as nonporous materials capable of capturing and releasing HCl reversibly in the crystalline solid state.

8.
Eur J Med Chem ; 242: 114638, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36001933

ABSTRACT

Epithelial-mesenchymal transition (EMT) endows stem cell-like properties to cancer cells. Targeting this process represents a potential therapeutic approach to overcome cancer metastasis and chemotherapy resistance. FiVe1 was identified from an EMT-based synthetic lethality screen and was found to inhibit the stem cell-like properties and proliferation of not only cancer cells undergoing EMT, but also more broadly in mesenchymal cancers that include therapeutically intractable soft tissue sarcomas. FiVe1 functions by directly binding to the type III intermediate filament protein vimentin (VIM) in a mode that induces hyperphosphorylation of Ser56, which results in selective disruption of mitosis and induced multinucleation in transformed VIM-expressing mesenchymal cancer cell types. Cell-based potency (IC50 = 1.6 µM, HT-1080 fibrosarcoma), poor solubility (<1 µM) and low oral bioavailability limits the direct application of FiVe1 as an in vivo probe or therapeutic agent. To overcome these drawbacks, we performed structure-activity relationship (SAR) studies and synthesized a set of 35 new compounds, consisting of diverse modifications of the FiVe1 scaffold. Among these compounds, 4e showed a marked improvement in potency (IC50 = 44 nM, 35-fold improvement, HT-1080) and cell type selectivity (19-fold improvement), when compared to FiVe1. Improvements in the potency of 4e, in terms of overall cytotoxicity, directly correlate with VIM Ser56 phosphorylation status and the oral bioavailability and pharmacokinetic profiles of 4e in mouse are superior to FiVe1. Successful optimization also resulted in potent and selective derivatives 11a, 11j and 11k, which exhibited superior pharmacological profiles, in terms of metabolic stability and aqueous solubility. Collectively, these optimization efforts have resulted in the development of promising FiVe1 analogs with potential applications in the treatment of mesenchymal cancers, as well as in the study of VIM-related biology.


Subject(s)
Epithelial-Mesenchymal Transition , Sarcoma , Animals , Cell Line, Tumor , Mice , Mitosis , Phosphorylation , Vimentin/genetics
9.
Cell Chem Biol ; 28(2): 158-168.e5, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33113406

ABSTRACT

Cancer immunotherapies, including immune checkpoint blockade, have the potential to significantly impact treatments for diverse tumor types. At present, response failures and immune-related adverse events remain significant issues, which could be addressed using optimized combination therapies. Through a cell-based chemical screen of ∼200,000 compounds, we identified that HSP90 inhibitors robustly decrease PD-L1 surface expression, through a mechanism that appears to involve the regulation of master transcriptional regulators (i.e., STAT-3 and c-Myc). Interestingly, HSP90 inhibitors were found to also modulate the surface expression of additional checkpoint proteins (i.e., PD-L2). In the MC-38 syngeneic mouse tumor model, HSP90 inhibition was found to dramatically reduce PD-L1 surface expression on isolated live tumor cells and, consistent with recent findings, was found to increase the number of activated CD8+ T cells within the tumor microenvironment. These findings provide further rationale to explore HSP90 inhibitors as part of combination immunotherapies for the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Immune Checkpoint Proteins/genetics , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , Cell Line , Cell Line, Tumor , Humans , Immunotherapy , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment/drug effects
10.
Science ; 369(6506): 993-999, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32820126

ABSTRACT

Stimulator of interferon genes (STING) links innate immunity to biological processes ranging from antitumor immunity to microbiome homeostasis. Mechanistic understanding of the anticancer potential for STING receptor activation is currently limited by metabolic instability of the natural cyclic dinucleotide (CDN) ligands. From a pathway-targeted cell-based screen, we identified a non-nucleotide, small-molecule STING agonist, termed SR-717, that demonstrates broad interspecies and interallelic specificity. A 1.8-angstrom cocrystal structure revealed that SR-717 functions as a direct cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) mimetic that induces the same "closed" conformation of STING. SR-717 displayed antitumor activity; promoted the activation of CD8+ T, natural killer, and dendritic cells in relevant tissues; and facilitated antigen cross-priming. SR-717 also induced the expression of clinically relevant targets, including programmed cell death 1 ligand 1 (PD-L1), in a STING-dependent manner.


Subject(s)
Antineoplastic Agents/pharmacology , Biomimetic Materials/pharmacology , Membrane Proteins/metabolism , Nucleotides, Cyclic/pharmacology , Animals , B7-H1 Antigen/metabolism , Biomimetic Materials/chemistry , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Crystallography, X-Ray , Dendritic Cells/drug effects , Dendritic Cells/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mice , Nucleotides, Cyclic/chemistry , Protein Conformation/drug effects
11.
Inorg Chem ; 57(9): 5657-5668, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29688005

ABSTRACT

Five complexes of formula [Ru(η6-C6H5CH2COOH)(XY)Cl]Cl/Na (XY = ethylenediamine (1), o-phenylenediamine (2), phenanthroline (3), and oxalato (4)) and [Ru(η6:κ1-C6H5CH2COO)(tmen)]Cl (tmen = N, N, N', N'-tetramethylethylenediamine, 5C) have been synthesized and fully characterized. Five new X-ray crystal structures ([Ru(η6-C6H5CH2COOH)(µ-Cl)Cl]2, 1, 3, 4, and 5C·PF6) have been determined, which are the first examples of ruthenium(II) structures with phenylacetic acid as arene ligand. Furthermore, 5C·PF6 is the first example of a five-membered tether ring with a Ru(η6:κ1-arene:O) bond. The tether ring in these complexes opens in acidic pH (<5) and closes reversibly in aqueous solution. The chlorido open-form undergoes aquation, and the aqua adduct can be observed (prior to ring closure) by NMR. The speciation has an attractive complexity in the pH range 0-12, showing interconversion of the three species (chlorido, aqua, and closed tether), dependent on the proton concentration and the nature of the XY chelating ligand. The closed tether version of 3, complex 3C, with σ-donor/π-acceptor phenanthroline as chelating ligand, opens up more readily (pH 4), while the tether ring in complex 5C hardly opens even at pH as low as 1. We have determined the p Ka of the pendant carboxylic group and that of the aqua adduct (ca. 3 and ca. 7, respectively), which can be finely tuned by the appropriate choice of XY. Complexes 1 and 2, which predominate in their inactive (closed-tether) form in intracellular conditions, show some cytotoxic activity (IC50 130 and 117 µM, respectively) in A2780 ovarian cancer cells. Complex 1 catalyzes the reduction through transfer hydrogenation of pyruvate to lactate and NAD+ to NADH in the presence of formate as H-source. Co-incubation with sodium formate decreases the IC50 value of 1 in A2780 cancer cells significantly.


Subject(s)
Antineoplastic Agents/pharmacology , Carboxylic Acids/pharmacology , Coordination Complexes/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carboxylic Acids/chemistry , Catalysis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , Models, Molecular , NAD/metabolism , Oxidation-Reduction , Ruthenium/chemistry
12.
Chemistry ; 23(64): 16231-16241, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28734001

ABSTRACT

The potential use of organoruthenium complexes as anticancer drugs is well known. Herein, a family of activatable tethered ruthenium(II) arene complexes of general formula [Ru{η6 :κ1 -C6 H5 (C6 H4 )NH2 }(XY)]n+ (closed tether ring) bearing different chelating XY ligands (XY=aliphatic diamine, phenylenediamine, oxalato, bis(phosphino)ethane) is reported. The activation of these complexes (closed- to open-tether conversion) occurs in methanol and DMSO at different rates and to different reaction extents at equilibrium. Most importantly, RuII -complex activation (cleavage of the Ru-Ntether bond) occurs in aqueous solution at high proton concentration (upon Ntether protonation). The activation dynamics can be modulated by rational variation of the XY chelating ligand. The electron-donating capability and steric hindrance of XY have a direct impact on the reactivity of the Ru-N bond, and XY=N,N'-dimethyl-, N,N'-diethyl-, and N,N,N',N'-tetramethylethylenediamine afford complexes that are more prone to activation. Such activation in acidic media is fully reversible, and proton concentration also governs the deactivation rate, that is, tether-ring closure slows down with decreasing pH. Interaction of a closed-tether complex and its open-tether counterpart with 5'-guanosine monophosphate revealed selectivity of the active (open) complex towards interaction with nucleobases. This work presents ruthenium tether complexes as exceptional pH-dependent switches with potential applications in cancer research.

13.
Nat Commun ; 7: 11002, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26964764

ABSTRACT

On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.


Subject(s)
Electronics , Gold/chemistry , Indoles/chemistry , Nanotechnology/methods , Porphyrins/chemistry , Cycloaddition Reaction , Isoindoles , Microscopy, Scanning Tunneling , Quantum Theory , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...