Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(8): e1011329, 2023 08.
Article in English | MEDLINE | ID: mdl-37578973

ABSTRACT

Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually assessed by projecting it onto a subset of biomarkers. Cell density and "empty spaces" in 2D projections of the data, i.e. regions devoid of cells, are then used for qualitative assessment. Here, we use topological data analysis (TDA), which quantifies shapes, including empty spaces, in data, to analyse pre-treatment ALL datasets with known patient outcomes. We combine these fully unsupervised analyses with Machine Learning (ML) to identify significant shape characteristics and demonstrate that they accurately predict risk of relapse, particularly for patients previously classified as 'low risk'. We independently confirm the predictive power of CD10, CD20, CD38, and CD45 as biomarkers for ALL diagnosis. Based on our analyses, we propose three increasingly detailed prognostic pipelines for analysing flow cytometry data from ALL patients depending on technical and technological availability: 1. Visual inspection of specific biological features in biparametric projections of the data; 2. Computation of quantitative topological descriptors of such projections; 3. A combined analysis, using TDA and ML, in the four-parameter space defined by CD10, CD20, CD38 and CD45. Our analyses readily extend to other haematological malignancies.


Subject(s)
Hematologic Neoplasms , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Adolescent , Humans , Neoplasm Recurrence, Local , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Flow Cytometry , Immunophenotyping , Recurrence
2.
Math Biosci Eng ; 18(4): 3291-3312, 2021 04 12.
Article in English | MEDLINE | ID: mdl-34198386

ABSTRACT

A huge variety of phenomena are governed by ordinary differential equations (ODEs) and partial differential equations (PDEs). However, there is no general method to solve them. Obtaining solutions for differential equations is one of the greatest problem for both applied mathematics and physics. Multiple integration methods have been developed to the day to solve particular types of differential equations, specially those focused on physical or biological phenomena. In this work, we review several applications of the Lie method to obtain solutions of reaction-diffusion equations describing cell dynamics and tumour invasion.


Subject(s)
Neoplasms , Diffusion , Humans , Mathematics
3.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198713

ABSTRACT

Chimeric Antigen Receptor (CAR) T-cell therapy has demonstrated high rates of response in recurrent B-cell Acute Lymphoblastic Leukemia in children and young adults. Despite this success, a fraction of patients' experience relapse after treatment. Relapse is often preceded by recovery of healthy B cells, which suggests loss or dysfunction of CAR T-cells in bone marrow. This site is harder to access, and thus is not monitored as frequently as peripheral blood. Understanding the interplay between B cells, leukemic cells, and CAR T-cells in bone marrow is paramount in ascertaining the causes of lack of response. In this paper, we put forward a mathematical model representing the interaction between constantly renewing B cells, CAR T-cells, and leukemic cells in the bone marrow. Our model accounts for the maturation dynamics of B cells and incorporates effector and memory CAR T-cells. The model provides a plausible description of the dynamics of the various cellular compartments in bone marrow after CAR T infusion. After exploration of the parameter space, we found that the dynamics of CAR T product and disease were independent of the dose injected, initial B-cell load, and leukemia burden. We also show theoretically the importance of CAR T product attributes in determining therapy outcome, and have studied a variety of possible response scenarios, including second dosage schemes. We conclude by setting out ideas for the refinement of the model.


Subject(s)
Bone Marrow/immunology , Immunotherapy, Adoptive , Models, Biological , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , B-Lymphocytes/immunology , Child , Humans , Immunologic Memory , Treatment Outcome
4.
J Theor Biol ; 522: 110685, 2021 08 07.
Article in English | MEDLINE | ID: mdl-33745905

ABSTRACT

Haematopoiesis is the process of generation of blood cells. Lymphopoiesis generates lymphocytes, the cells in charge of the adaptive immune response. Disruptions of this process are associated with diseases like leukaemia, which is especially incident in children. The characteristics of self-regulation of this process make them suitable for a mathematical study. In this paper we develop mathematical models of lymphopoiesis using currently available data. We do this by drawing inspiration from existing structured models of cell lineage development and integrating them with paediatric bone marrow data, with special focus on regulatory mechanisms. A formal analysis of the models is carried out, giving steady states and their stability conditions. We use this analysis to obtain biologically relevant regions of the parameter space and to understand the dynamical behaviour of B-cell renovation. Finally, we use numerical simulations to obtain further insight into the influence of proliferation and maturation rates on the reconstitution of the cells in the B line. We conclude that a model including feedback regulation of cell proliferation represents a biologically plausible depiction for B-cell reconstitution in bone marrow. Research into haematological disorders could benefit from a precise dynamical description of B lymphopoiesis.


Subject(s)
B-Lymphocytes , Lymphopoiesis , Cell Lineage , Child , Feedback , Humans , Models, Theoretical
5.
PLoS Comput Biol ; 17(2): e1008266, 2021 02.
Article in English | MEDLINE | ID: mdl-33566821

ABSTRACT

Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting.


Subject(s)
Models, Biological , Neoplasms/etiology , Algorithms , Brain Neoplasms/etiology , Brain Neoplasms/pathology , Cell Death , Cell Division , Cell Movement , Computational Biology , Computer Simulation , Disease Progression , Glioblastoma/etiology , Glioblastoma/pathology , Humans , Mutation , Neoplasms/pathology , Prognosis , Software , Spatio-Temporal Analysis , Stochastic Processes
6.
Cancers (Basel) ; 13(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374500

ABSTRACT

Artificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction of response biomarkers. Many computational methods from the bioinformatics toolbox can be applied to these data, but they have not been exploited in their full potential in leukaemias, specifically for the case of childhood B-cell Acute Lymphoblastic Leukaemia. In this paper, we analysed flow cytometry data that were obtained at diagnosis from 56 paediatric B-cell Acute Lymphoblastic Leukaemia patients from two local institutions. Our aim was to assess the prognostic potential of immunophenotypical marker expression intensity. We constructed classifiers that are based on the Fisher's Ratio to quantify differences between patients with relapsing and non-relapsing disease. We also correlated this with genetic information. The main result that arises from the data was the association between subexpression of marker CD38 and the probability of relapse.

SELECTION OF CITATIONS
SEARCH DETAIL
...